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Torsional oscillations from numerical
simulations of the geodynamo

Pm=0.1, Ro=5 104, Le=2 10-3, A=0.27

See also Aubert, 2018: Pm=, Ro=2.4 104, Le=2.2 10-3, A=0.11 Schaeffer & al., 2017



Torsional Alfvén waves
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Torsional waves consist of geostrophic motions coupled by the magnetic field
in the Earth’s fluid outer core



Six year oscillation in length-of-day

4 - 9.5 year band pass filter

SSA reconstruction, pair of eigen modes
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Torsional Alfvén modes of periods ~ 6 years and less



SSA reconstruction, pair of eigen modes
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Coupling between external magnetic
fields and torsional waves

External fields of periods 11 years (dipole), 1 year (axial quadrupole) and 6 months (axial
dipole).

Induced field, solid core approximation: B,=0 at the core-mantle boundary (as a result of
electrical currents in a magnetic diffusive layer at the core surface).

Previous studies (Gédéon Légaut thesis, 2005): 11 years component interacting with
torsional waves, assuming the period of the main mode is ~60 years.

Axial part of the dipole: ineffective; weak waves propagating inwards in the fluid core from
the equator.

Gillet & al., 2010: revised period of the main mode, 6 years.

What induced field in the Earth’s fluid core with period 1 year, implications for models of
mantle electrical conductivity ? Emission of torsional waves with 1 year period? Auspicious
quadrupolar geometry.

But : attenuation across the mantle.



The ‘mantle filter’
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Trade-off between geometric attenuation and the impact of the electrical conductivity
of the mantle (Jault, 2015)
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Electromagnetic sounding
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Transfer function for European observatories

assuming the Earth’s core can be treated as a solid (Olsen, 1999)

1 year, 6 months



Domain of existence of torsional
Alfvéen waves

Torsional waves present when:

Frequency: wn~ — = A}

Standard equations developed in a full sphere for:

y 1/2 n\1/2 w0
-’ P, | =) < cosf
(QCOS@) < (w) ’ (Q)

(8 colatitude)




The hydromagnetic assumption

Stewartson’s jump condition through the boundary layer (with Bo,r directed
towards the fluid interior) for the zonal toroidal components:

b
[Prln/ngb _ _¢] —-0, P,= v
N 77

when it is not satisfied: emission of Alfvén waves to erase the
discontinuity

application: boundary condition for torsional waves at the Earth’s core
equator

In the 1K1 framework, assumption: velocity shear in the direction parallel
to the rotation axis forbidden = inhibition of the emission of Alfvén waves

and construction of a magnetic diffusive layer away from the equator



Torsional wave equation

High frequency approximation

Clovt) = exp(-iwt)a(s),  Gale) =3 (mVEGE ) m= s

Same equation for long gravity waves (of small height) in a channel of slowly
varying width and depth

George Green (1837): high frequency approximations to the solution, first instance
of the method later known as the WKB method (two-lengthscale expansion)

approximated solution away from the boundaries:

C 7w .
CG(S):\/meXp 1 V—Ads—lwt

1
high frequency approximation valid where: — < < w



Equatorial (Va constant) solution

Limit cases: Neumann or Dirichlet boundary conditions

Boundary condition (at the equator): % . =0 (% =Pn=0) or (c(1)=0 (Ppn=o00)
Choice of unit: Va(l) =1
Two independent solutions: 24T (), oY (ws)

d¢e

For 19

s=1

(e (s) = Cm(1 — 8)Y* T 1 ju(w(l — s))



Matching between the WKB and equatorial solutions

In the limit of high frequency:
2

1/2
Ca(s) = Cm (;) w_l/z(l — S)_1/4 cos |w(l —s) — g} +0 (w_3/2>

Matching with the WKB solution in the interior (as in Maffei & Jackson, 2016):

1
Ca(s) = \/TCnLVA cos(wT(s) + ¢o), T(s) = 3 3_2 =1—s, b0 = _g
On the axis (Mound & Buffett, 2007).
Use J1 (ws/Va(0)) 2V4(0) WS 37
- — O _ N B om
0s ls=0 CGls) = Cr s Tuws) Tws V4 (0) i 4

— quantification of the eigenvalues:
Example:

3 7
Vs, Va(s)=1 w(l=8) = % = —ws+ L+, wn:<n+_)w



The second family of normal modes

For (a(1) =0

Ca(s) = Cur(1 — 8)V* Ty ja(w(1 = s))
In the limit of high frequency:

9\ 1/2
Ca(s) ~ Cr (;) w_1/2(1 — S)_1/4 CoS [w(l —5)— —



Asymptotic matching in the equatorial
region
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lllustration with a non-uniform Alfvén velocity
from Roberts & Aurnou (2012)

Alfvén velocity model 0Ca
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Matching between the equatorial solution (Va=1)
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wn depends of the magnetic field model, only through the travel time t



Finite magnetic Prandtl number

1-D theory: Alfvén waves across a plane slab

0< P, <
0*u  0%u
— — <zr<l1
ox?2  Ot? 0, Osas
0
Problem set-up such that the boundary condition at one extremity (x=0) is: Vt, a—Z(O, t)=20
= general form of the solution: © = exp(At) (exp(Az) + exp(—Ax))
From the jump condition P/?u —b =0 and the induction equation % — —% (Bo.x enters the fluid)
X
the boundary condition at the other extremity (x=1) is of mixed type: V¢, % — —Pﬁf% — _)\pT}l/%
X
1— PY? 1 1— P?
2)\) = A=—|1 2n i
eXp( ) 1—|—P71n/2’ 2<Og 1+P7}1/2 + 2nml
log, principal branch (in the complex plane) of the logarithm.
A

Frequency jump from Pr/? =17to P/? =1% nm— nm+ 2



1 ||1=P/?
Decay rate:  J(A) =  In L pi

Reflection of an impulsive wave

Solution of the form flt—z)+ F(t+x)

At x=1 Ou _  p1/20U
ox oot
1— P>
Reflected wave F = 7 f
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Reflection at the equator

Comparison between 1D theory and 3D simulations

Reflection of an impulsive wave

Magnetic Prandtl number: Mantle conductivity:

Axisymmetric 2D code
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1D equations for torsional waves in the sphere
with magnetic and/or viscous coupling

by = —QsCa
From the estimation of the
magnetic field at the top of the
| mainstream 2¢c 10 ,0C Q(0) ¢
(in the presence of a 52 — s \"WVAs o | T e
conducting mantle): m
)= ,/=B,(f / ,0)d
Braginsky, 1970 Q) P (©) mantle o(r,0)dr
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Transmission, branching and reflection

0

Trapsmission (branching) at the tangent cylinder
(the cylindrical surface tangent to the inner core at its equator)

Reflection at the
core equator

Reflection on the
rotation axis



