
Torsional Alfvén waves in a rotating 
spherical shell: transmission and 
reflection in the Earth’s outer core

Dominique Jault, ISTerre, University Grenoble Alpes, France

University of Coimbra, Portugal: 28th March 2018 
Space Weather: coupling of ionosphere, magnetosphere and Earth's core



Torsional oscillations from numerical 
simulations of the geodynamo

Schaeffer & al., 2017

Pm=0.1, Ro=5 10-4, Le=2 10-3, A=0.27

See also Aubert, 2018: Pm=, Ro=2.4 10-4, Le=2.2 10-3, A=0.11 



Torsional Alfvén waves

Torsional waves consist of geostrophic motions coupled by the magnetic field

in the Earth’s fluid outer core 

2h

@2⇣G
@t2

=
1

m

@

@s

✓
mV 2

A
@⇣G
@s

◆
,

m = s3h, V 2
A =

1

⌃

ZZ
B2

s

µ0⇢
d⌃

s2 + h2 = 1, ⌃ = 4⇡sh



Six year oscillation in length-of-day
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Torsional Alfvén modes of periods ~ 6 years and less

Gillet & al. (2015)

4 - 9.5 year band pass filter
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Coupling between external magnetic 
fields and torsional waves 

• External fields of periods 11 years (dipole), 1 year (axial quadrupole) and 6 months (axial 
dipole).


• Induced field, solid core approximation: Br=0 at the core-mantle boundary (as a result of 
electrical currents in a magnetic diffusive layer at the core surface).


• Previous studies (Gédéon Légaut thesis, 2005): 11 years component interacting with 
torsional waves, assuming the period of the main mode is ~60 years.


• Axial part of the dipole: ineffective; weak waves propagating inwards  in the fluid core from 
the equator.


• Gillet & al., 2010: revised period of the main mode, 6 years.


• What induced field in the Earth’s fluid core with period 1 year, implications for models of 
mantle electrical conductivity ? Emission of torsional waves with 1 year period? Auspicious 
quadrupolar geometry.


• But : attenuation across the mantle.



The ‘mantle filter’

Trade-off between geometric attenuation and the impact of the electrical conductivity 

of the mantle (Jault, 2015)  



Electromagnetic sounding

Transfer function for European observatories 

assuming the Earth’s core can be treated as a solid (Olsen, 1999)

1 year, 6 months



Domain of existence of torsional 
Alfvén waves

Torsional waves present when:
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The hydromagnetic assumption

• Stewartson’s jump condition through the boundary layer (with B0,r directed 
towards the fluid interior) for the zonal toroidal components:


• when it is not satisfied: emission of Alfvén waves to erase the 
discontinuity


• application: boundary condition for torsional waves at the Earth’s core 
equator


• In the "≪1 framework, assumption: velocity shear in the direction parallel 
to the rotation axis forbidden ⇒ inhibition of the emission of Alfvén waves 
and construction of a magnetic diffusive layer away from the equator
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Torsional wave equation

• Same equation for long gravity waves (of small height) in a channel of slowly 
varying width and depth


• George Green (1837): high frequency approximations to the solution, first instance 
of the method later known as the WKB method (two-lengthscale expansion)


• approximated solution away from the boundaries:
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Equatorial (VA constant) solution
Limit cases: Neumann or Dirichlet boundary conditions

Boundary condition (at the equator): ⇣G(1) = 0
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Matching between the WKB and equatorial solutions

⟹ quantification of the eigenvalues:

On the axis (Mound & Buffett, 2007):
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Asymptotic matching in the equatorial 
region
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Illustration with a non-uniform Alfvén velocity  
from Roberts & Aurnou (2012)
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Finite magnetic Prandtl number

Problem set-up such that the boundary condition at one extremity (&=0) is: 8t, @u
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⇒ general form of the solution: 

the boundary condition at the other extremity ('=1) is of mixed type:
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Decay rate:

Reflection of an impulsive wave
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Reflection at the equator

Mantle conductivity:Magnetic Prandtl number:

Comparison between 1D theory and 3D simulations

Schaeffer & Jault, 2016
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Dependence on the width of the incoming pulse d and apparent dispersion upon reflection



1D equations for torsional waves in the sphere 
with magnetic and/or viscous coupling
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From the estimation of the 
magnetic field at the top of the 

mainstream 

(in the presence of a 
conducting mantle):

b� = �Qs⇣G
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Reflection	on	a	plane,	Pm=0.
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Plane wall prediction vs

reduced (1D) modelling

Gillet & al., 2017



Transmission, branching and reflection

Transmission (branching) at the tangent cylinder 
(the cylindrical surface tangent to the inner core at its equator)

Reflection at the 
core equator

Reflection on the

rotation axis

⌦


