1985/1. $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}=\left((\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}-\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)\right) / 2=183$, so $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are roots of the cubic $x^{3}-24 x^{2}+183 x-440=0$. But it easily factorizes as $(x-5)(x-8)(x-11)=0$, so the only solutions are permutations of $(5,8,11)$.

1985/2. Answer: $\sqrt{ } 129$.

Let the side length be x . Using the cosine formula, we have $\cos \mathrm{APB}=\left(74-\mathrm{x}^{2}\right) / 70$, \cos $\mathrm{APC}=\left(89-\mathrm{x}^{2}\right) / 80, \cos \mathrm{BPC}=\left(113-\mathrm{x}^{2}\right) / 112$. But $\cos \mathrm{BPC}=\cos \mathrm{APC} \cos \mathrm{BPC}-\sin$ $\mathrm{APC} \sin \mathrm{BPC}$, so $\left(113-\mathrm{x}^{2}\right) / 112=\left(74-\mathrm{x}^{2}\right) / 79\left(89-\mathrm{x}^{2}\right) / 80-\sqrt{ }\left(\left(1-\left(74-\mathrm{x}^{2}\right)^{2} / 70^{2}\right)(1-\right.$ $\left.\left(89-\mathrm{x}^{2}\right)^{2} / 80^{2}\right)$).

We isolate the square root term, then square. We multiply through by 25.256 .49 and, after some simplification, we get $x^{6}-138 x^{4}+1161 x^{2}=0$. Hence $x=0, \pm 3, \pm \sqrt{ } 129$. We discard the zero and negative solutions. $\mathrm{x}=3$ corresponds to a point P outside the triangle. So the unique solution for a point P inside the triangle is $x=\sqrt{ } 129$

1985/3. We have $\mathrm{r}_{1} \mathrm{r}_{2} \mathrm{r}_{3} \mathrm{r}_{4}=5 / 4$ and hence $\left(\mathrm{r}_{1} / 2\right)\left(\mathrm{r}_{2} / 4\right)\left(\mathrm{r}_{3} / 5\right)\left(\mathrm{r}_{4} / 8\right)=1 / 4^{4}$. But AM/GM gives that $\left(\mathrm{r}_{1} / 2\right)\left(\mathrm{r}_{2} / 4\right)\left(\mathrm{r}_{3} / 5\right)\left(\mathrm{r}_{4} / 8\right) \leq\left(\left(\mathrm{r}_{1} / 2+\mathrm{r}_{2} / 4+\mathrm{r}_{3} / 5+\mathrm{r}_{4} / 8\right) / 4\right)^{4}=1 / 4^{4}$ with equality if and only if $r_{1} / 2=r_{2} / 4=r_{3} / 5=r_{4} / 8$. Hence we must have $r_{1}=1 / 2, r_{2}=1, r_{3}=5 / 4, r_{4}=2$.

1985/4. We have $y z-x^{2}-y^{2} z+y x^{2}=x z-y^{2}-x^{2} z+x y^{2}$. Hence $z\left(y-x-y^{2}+x^{2}\right)=-y^{2}$ $+x y^{2}-x^{2} y+x^{2}$. Hence $z=(x+y-x y) /(x+y-1)$

So $\mathrm{yz}=\mathrm{x}+\mathrm{y}+\mathrm{z}-\mathrm{xy}-\mathrm{xz}$, so $\mathrm{yz}-\mathrm{x}^{2}=\mathrm{x}+\mathrm{y}+\mathrm{z}-\mathrm{x}^{2}-\mathrm{xy}-\mathrm{xz}=(\mathrm{x}+\mathrm{y}+\mathrm{z})(1-\mathrm{x})$, so $(\mathrm{yz}$ $\left.-x^{2}\right) /(1-x)=(x+y+z)$.

1985/5. If $f(m n)=0$, then $f(m)+f(n)=0$ (by (1)). But $f(m)$ and $f(n)$ are non-negative, so $f(m)=f(n)=0$. Thus $f(10)=0$ implies $f(5)=0$. Similarly $f(3573)=0$ by (2), so $f(397)=0$. Hence $f(1985)=f(5)+f(397)=0$.

1985/6. Projecting onto the altitude from A, we have $A D \cos (C-B)=A C \sin C=2 R$ $\sin B \sin C$, so $2 R / A D=\cos (C-B) /(\sin B \sin C)$.

Hence $2 R / A D+2 R / B E+2 R / C F=\cos (C-B) /(\sin B \sin C)+\cos (A-C) /(\sin C \sin A)+$ $\cos (B-A) /(\sin A \sin B)$. So $2 R \sin A \sin B \sin C(1 / A D+1 / B E+1 / C F)=\sin A \cos (B$ $\mathrm{C})+\sin \mathrm{B} \cos (\mathrm{C}-\mathrm{A})+\sin \mathrm{C} \cos (\mathrm{A}-\mathrm{B})=3 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}+\sin \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}+\sin$ $B \cos A \cos C+\sin C \cos A \cos B=3 \sin A \sin B \sin C+\sin (A+B) \cos C+\sin C \cos$ $A \cos B=3 \sin A \sin B \sin C+\sin C(\cos C+\cos A \cos B)=3 \sin A \sin B \sin C+\sin$ $C(-\cos (A+B)+\cos A \cos B)=4 \sin A \sin B \sin C$. Hence $1 / A D+1 / B E+1 / C F=2 / R$

1987/1. Put $x=(1-y) /(1+y)$, then $(1--x) /(1+x)=y$, so $f((1-y) /(1+y))^{2} f(y)=64(1-$ $y) /(1+y)$. Hence $f((1-x) /(1+x))^{2} f(x)=64(1-x) /(1+x)$. But $f(x)^{4} f((1-x) /(1+x))^{2}=64^{2} x^{2}$, so $f(x)^{3}=64 x^{2}(1+x) /(1-x)$. Hence $f(x)=4\left(x^{2}(1+x) /(1-x)\right)^{1 / 3}$.

1987/2. If the quadrilateral has an inscribed circle then $\mathrm{AM}+\mathrm{PN}=\mathrm{AN}+\mathrm{PM}$ (consider the tangents to the circle from A, M, P, N). But if $A B>A C$, then $B M>C N$ (see below). We have $\mathrm{AN}=\mathrm{AB} / 2, \mathrm{PM}=\mathrm{BM} / 3, \mathrm{AM}=\mathrm{AC} / 2, \mathrm{PN}=\mathrm{CN} / 3$, so it follows that AM + PN < AN + PM. Similarly, AB < AC implies AM + PN > AN + PM, so the triangle must be isosceles.

To prove the result about the medians, note that $\mathrm{BM}^{2}=\mathrm{BC}^{2}+\mathrm{CM}^{2}-2 \mathrm{BC} \cdot \mathrm{CM} \cos \mathrm{C}=$ $(B C-C M \cos C)^{2}+(C M \sin C)^{2}$. Similarly, $C^{2}=(B C-B N \cos B)^{2}+(B N \sin B)^{2}$. But $M N$ is parallel to $B C$, so $C M \sin C=B N \sin B$. But $A B>A C$, so $B N>C M$ and B $<\mathrm{C}$, so $\cos \mathrm{B}>\cos \mathrm{C}$, hence $\mathrm{BN} \cos \mathrm{B}>\mathrm{CM} \cos \mathrm{C}$ and $\mathrm{BC}-\mathrm{CM} \cos \mathrm{C}>\mathrm{BC}-\mathrm{BN} \cos$ B. $\mathrm{So} \mathrm{BM}>\mathrm{CN}$.

1987/3. We have $(2+\sqrt{ } 3)^{4}=97+56 \sqrt{ } 3=14(7+4 \sqrt{ } 3)-1=14(2+\sqrt{3})^{2}-1$. Hence $(2$ $+\sqrt{3})^{k+2}=14(2+\sqrt{ } 3)^{k}-(2+\sqrt{ } 3)^{k-2}$. Thus if $(2+\sqrt{ } 3)^{k}=a_{k}+b_{k} \sqrt{ } 3$, then $a_{k+2}=14 a_{k}-a_{k-}$ 2.

Now suppose the sequence c_{k} satisfies $\mathrm{c}_{1}=1, \mathrm{c}_{2}=5, \mathrm{c}_{\mathrm{k}+1}=4 \mathrm{c}_{\mathrm{k}}-\mathrm{c}_{\mathrm{k}-1}$. We claim that $\mathrm{c}_{\mathrm{k}}{ }^{2}$ $-\mathrm{c}_{\mathrm{k}-1} \mathrm{c}_{\mathrm{k}+1}=6$. Induction on k . We have $\mathrm{c}_{3}=19$, so $\mathrm{c}_{2}{ }^{2}-\mathrm{c}_{1} \mathrm{c}_{3}=25-19=6$. Thus the
result is true for $k=2$. Suppose it is true for k. Then $c_{k+1}=4 c_{k}-c_{k-1}$, so $c_{k+1}^{2}=4 c_{k} c_{k+1}$ $c_{k-1} c_{k+1}=4 c_{k} c_{k+1}-c_{k}^{2}+6=c_{k}\left(4 c_{k+1}-c_{k}\right)+6=c_{k} c_{k+2}+6$, so the result is true for $k+1$.

Now put $d_{k}=c_{k}^{2}+1$. We show that $d_{k+2}=14 d_{k+1}-d_{k}$. Induction on k. We have $d_{1}=2$, $d_{2}=26, d_{3}=362=14 d_{2}-d_{1}$, so the result is true for $k=1$. Suppose it is true for k. We have $c_{k+3}-4 c_{k+2}+c_{k+1}=0$. Hence $12+2 c_{k+3} c_{k+1}-8 c_{k+2} c_{k+1}+2 c_{k+1}^{2}=12$. Hence 2 $c_{k+2}^{2}-8 c_{k+2} c_{k+1}+2 c_{k+1}^{2}=12$. Hence $16 c_{k+2}^{2}-8 c_{k+2} c_{k+1}+c_{k+1}^{2}+1=14 c_{k+2}^{2}+14-$ $c_{k+1}^{2}-1$, or $\left(4 c_{k+2}-c_{k+1}\right)^{2}+1=14\left(c_{k+2}^{2}+1\right)-\left(c_{k+1}^{2}+1\right)$, or $c_{k+3}^{2}+1=14\left(c_{k+2}^{2}+1\right)-$ $\left(c_{k+1}^{2}+1\right)$, or $d_{k+3}=14 d_{k+2}-d_{k+1}$. So the result is true for all k.

But $\mathrm{a}_{1}=2, \mathrm{a}_{3}=26$ and $\mathrm{a}_{2 \mathrm{k}+3}=14 \mathrm{a}_{2 \mathrm{k}+1}-\mathrm{a}_{2 \mathrm{k}-1}$, and $\mathrm{d}_{1}=2, \mathrm{~d}_{2}=26$ and $\mathrm{d}_{\mathrm{k}+1}=14 \mathrm{~d}_{\mathrm{k}}-\mathrm{d}_{\mathrm{k}-1}$. Hence $\mathrm{a}_{2 \mathrm{k}-1}=\mathrm{d}_{\mathrm{k}}=\mathrm{c}_{\mathrm{k}}^{2}+1$.

1987/4.

1987/5. Put $f(x)=x(x-2)(3 x-7)-2=3 x^{3}-13 x^{2}+14 x-2$. Then $f(0)=-2, f(1)=2$, so there is a root between 0 and 1. $f(2)=-2$, so there is another root between 1 and $2 . f(3)=$ 4 , so the third root is between 2 and $3 . \mathrm{f}(\mathrm{x})=0$ has three roots, so they are all real and positive.

We have $\tan (a+b+c)=(\tan a+\tan b+\tan c-\tan a \tan b \tan c) /(1-(\tan a \tan b+\tan b$ $\tan \mathrm{c}+\tan \mathrm{c} \tan \mathrm{a})$). So putting $\mathrm{a}=\tan ^{-1} \mathrm{r}, \mathrm{b}=\tan ^{-1} \mathrm{~s}, \mathrm{c}=\tan ^{-1} \mathrm{t}$, we have, $\tan (\mathrm{a}+\mathrm{b}+\mathrm{c})=$ $((r+s+t)-r s t) /(1-(r s+s t+\operatorname{tr}))=(13 / 3-2 / 3) /(1-14 / 3)=-1 . S o a+b+c=-\pi / 4+$ $\mathrm{k} \pi$. But we know that each of $\mathrm{r}, \mathrm{s}, \mathrm{t}$ is real and positive, so $\mathrm{a}+\mathrm{b}+\mathrm{c}$ lies in the range 0 to $3 \pi / 2$. Hence $\mathrm{a}+\mathrm{b}+\mathrm{c}=3 \pi / 4$.

1987/6. If AB is parallel to CD , then it is obvious that PQ is parallel to both. So assume AB and CD meet at O . Take O as the origin for vectors. Let \mathbf{e} be a unit vector in the direction OA and \mathbf{f} a unit vector in the direction OC. Take the vector OA to be ae, OB to be be, OC to be cf, and OD to be df. Then OP is $((d-c) a e+(a-b) d f) /(d-c+a-b)$ and $O Q$ is $((d-c) b \mathbf{e}+(a-b) c f) /(d-c+a-b)$. Hence PQ is $(c-d)(a-b)(\mathbf{c}+\mathbf{f}) /(d-c+a-$ b). But \mathbf{e} and \mathbf{f} are unit vectors, so $\mathbf{e}+\mathbf{f}$ makes the same angle with each of them and hence $P Q$ makes the same angle with $A B$ and $C D$.

1988/1. Let the sides be $a, a+d, a+2 d$ with $d>=0$. Then the altitudes are $k / a \geq k /(a+d) \geq$ $k /(a+2 d)$, where k is twice the area. We claim that $k / a+k /(a+2 d)>2 k /(a+d)$ unless $d=$ 0 . This is equivalent to $(a+d)(a+2 d)+a(a+d)>2 a(a+2 d)$ or $2 d^{2}>0$, which is obviously true. So the altitudes can only form an arithmetic progression if $d=0$ and hence the triangle is equilateral.

1988/2. $\mathrm{p} / \mathrm{q}>\mathrm{c} / \mathrm{d}$ implies $\mathrm{pd}>\mathrm{cq}$ and hence $\mathrm{pd}>=\mathrm{cq}+1$, so $\mathrm{p} / \mathrm{q} \geq \mathrm{c} / \mathrm{d}+1 /(\mathrm{qd})$. Similarly, $a / b>p / q$ implies $a / b \geq p / q+1 /(b q)$. So $a / b-c / d \geq 1 /(q d)+1 /(q b)=(b+$ $d) /(q b d)$. But $a / b-c / d=1 / b d$. Hence $q \geq b+d$.

Now assume $\mathrm{q}=\mathrm{b}+\mathrm{d}$. We have $\mathrm{ad}-\mathrm{bc}=1 \leq \mathrm{d}$, so $\mathrm{ad}+\mathrm{cd}-\mathrm{d} \leq \mathrm{bc}+\mathrm{cd}$ and hence $(a+c-1) /(b+d) \leq c / d$. So $p \geq a+c$. Similarly ad $-b c \leq b$, so $b c+b+a b \geq a d+a b$, so $(a+c+1) /(b+d) \geq a / b$. So $p \leq a+c$. Hence $p=a+c$.

1988/3. Given points $\mathrm{P}, \mathrm{B}, \mathrm{C}$ and a fixed circle center P , we show that the point A on the circle which maximises $\mathrm{AB}+\mathrm{AC}$ is such that PA bisects angle BAC . Consider a point A^{\prime} close to A. Then the change in $A B+A C$ as we move A to A^{\prime} is $A^{\prime}(\sin P A C ~-~$ $\sin \mathrm{PAB})+\mathrm{O}\left(\mathrm{AA}^{\prime 2}\right)$. So for a maximal configuration we must have $\sin \mathrm{PAC}=\sin$ PAB , otherwise we could get a larger sum by taking A' on one side or the other. This applies to each vertex of the triangle, so P must be the incenter.

1988/4. Using the cosine formula, $\mathrm{AA}_{\mathrm{k}}{ }^{2}=\mathrm{AB}^{2}+\mathrm{k}^{2} \mathrm{BC}^{2} /(\mathrm{n}+1)^{2}-2 \mathrm{kAB} \cdot \mathrm{BC} /(\mathrm{n}+1) \cos$ B. So $\sum_{\mathrm{AA}}^{\mathrm{k}}{ }^{2}=\mathrm{nAB}{ }^{2}+\mathrm{BC}^{2} /(\mathrm{n}+1)^{2}\left(1^{2}+2^{2}+\ldots+\mathrm{n}^{2}\right)-2 \mathrm{AB} \cdot \mathrm{BC} \cos \mathrm{B}(1+2+\ldots+$ $\mathrm{n}) /(\mathrm{n}+1)$. Similarly for the other two sides.

Thus the total sum is $n\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)+\mathrm{n}(2 \mathrm{n}+1) /(6(\mathrm{n}+1))\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)-\mathrm{n}$ $(A B \cdot B C \cos B+B C \cdot C A \cos C+C A \cdot A B \cos A) . B u t A B \cdot B C \cos B=\left(A B^{2}+B^{2}-\right.$ $\left.\mathrm{CA}^{2}\right) / 2$, so $\mathrm{AB} \cdot \mathrm{BC} \cos \mathrm{B}+\mathrm{BC} \cdot \mathrm{CA} \cos \mathrm{C}+\mathrm{CA} . \mathrm{AB} \cos \mathrm{A}=\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right) / 2$. Thus the sum is rational multiple of $\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)$.

1988/5. We need $\mathrm{xu}+2 \mathrm{zv}+2 \mathrm{yw}=1, \mathrm{yu}+\mathrm{xv}+2 \mathrm{zw}=0, \mathrm{zu}+\mathrm{yv}+\mathrm{xw}=0$. This is just a straightforward set of linear equations. Solving, we get: $u=\left(x^{2}-2 y z\right) / d, v=\left(2 z^{2}-\right.$ $x y) / d, w=\left(y^{2}-x z\right) / d$, were $d=x^{3}+2 y^{3}+4 z^{3}-6 x y z$.

This would fail if $d=0$. But if $d=0$, then multiplying through by a suitable integer we have $6 m n r=m^{3}+2 n^{3}+4 r^{3}$ for some integers m, n, r. But we can divide by any common factor of m, n, r to get them without any common factor. But $6 m n r, 2 n^{3}, 4 r^{3}$ are all even, so m must be even. Put $\mathrm{m}=2 \mathrm{M}$. Then $12 \mathrm{Mnr}=8 \mathrm{M}^{3}+2 \mathrm{n}^{3}+4 \mathrm{r}^{3}$, so $6 \mathrm{Mnr}=$ $4 \mathrm{M}^{3}+\mathrm{n}^{3}+2 \mathrm{r}^{3}$. But $6 \mathrm{Mnr}, 4 \mathrm{M}^{3}$ and $2 \mathrm{r}^{3}$ are all even, so n must be even. Put $\mathrm{n}=2 \mathrm{~N}$. Then $12 \mathrm{MNr}=4 \mathrm{M}^{3}+8 \mathrm{~N}^{3}+2 \mathrm{r}^{3}$, so $6 \mathrm{MNr}=2 \mathrm{M}^{3}+4 \mathrm{~N}^{3}+\mathrm{r}^{3}$, so r must be even. So m , n, r had a common factor 2 . Contradiction. So d cannot be zero.

1988/6. Induction on n . For $\mathrm{n}=1,\{1\}$ is obviously maximal. Now suppose $\mathrm{a}_{1}<\mathrm{a}_{2}<\ldots$ $<a_{n}$ is a maximal set for n. Take a_{n+1} to be the smallest integer $>a_{n}$ such that $\left\{a_{1}, a_{2}, \ldots\right.$, $\left.a_{n+1}\right\}$ has no three members in AP. Now consider the sequences $b_{1}<b_{2}<\ldots<b_{n}$ which have no three in AP and $b_{n+1} \leq a_{n+1}$. There are only finitely many such sequences. So we can find one which is maximal. Suppose it is $\mathrm{c}_{1}<\mathrm{c}_{2}<\ldots<\mathrm{c}_{\mathrm{n}+1}$. Now take whichever of a_{i}, c_{i} has the larger sum of inverses. It is clearly maximal with respect to sequences whose largest member is $\leq a_{n+1}$. Suppose we have a sequence $x_{1}<x_{2}<\ldots<x_{n+1}$ with no three in AP and $x_{n+1}>a_{n+1}$. Then we have $1 / x_{n+1}<1 / a_{n+1}$ and, by induction, $1 / x_{1}+\ldots+$ $1 / x_{n} \leq 1 / a_{1}+\ldots+1 / a_{n}$, so $1 / x_{1}+\ldots+1 / x_{n+1}<1 / a_{1}+\ldots+1 / a_{n+1}$, so it is worse than the sequence we have chosen.

1989/1. Answer: $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,-1,1)$ or $(-1,-1,-1)$.
From the first equation $x=z-y-1$. Substituting in the second equation: $2 z^{2}-2 y z+2 y-$ $2 z=0$, so $(z-1)(z-y)=0$. Hence $z=1$ or $y=z$. If $z=1$, then from the first equation x $+y=0$, and hence from the last equation, $x=1, y=-1$. If $y=z$, then $x=-1$, and hence from the last equation $y=z=-1$.

1989/2. We have $\sin 2 \mathrm{x}+\sin 2 \mathrm{y}+\sin 2 \mathrm{z}-2 \sin \mathrm{x} \cos \mathrm{y}-2 \sin \mathrm{y} \cos \mathrm{z}=2 \sin \mathrm{x}(\cos \mathrm{x}-$ $\cos y)+2 \sin y(\cos y-\cos z)+2 \sin z \cos z$, so we wish to show that $\sin x(\cos x-\cos$ $y)+\sin y(\cos y-\cos z)+\sin z \cos z<\pi / 2(*)$.

We have to consider six cases: (1) $x \leq y \leq z$; (2) $x \leq z \leq y$; (3) $y \leq x \leq z$; (4) $y \leq z \leq x$; (5) $z \leq x \leq y$; (6) $z \leq y \leq x$. The first case is obvious from the diagram, because the lhs represents the shaded area, and the rhs represents the whole quarter circle.

In cases (2) and (5) the second term is negative, and $-\sin y<-\sin x$, so the sum of the first two terms is less than $\sin x(\cos x-\cos y)+\sin x(\cos y-\cos z)=\sin x(\cos x-\cos$ z). But by the same argument as the first case the two rectangles represented by $\sin x($ $\cos \mathrm{x}-\cos \mathrm{z}$) and $\sin \mathrm{z} \cos \mathrm{z}$ are disjoint and fit inside the quarter circle. So we have proved (2) and (5).

In cases (3) and (4), the first term is negative. The remaining two terms represen disjoint rectangles lying inside the quarter circle, so again the inequality holds.

In case (6) the first two terms are negative. The last term is $1 / 2 \sin 2 z \leq 1 / 2<\pi / 2$, so the inequality certainly holds.

1989/3. Put $f(a, b, c)=(a-b) /(a+b)+(b-c) /(b+c)+(c-a) /(a+c)$. Let A, B, C be the permutation of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, with $\mathrm{A}<=\mathrm{B}<=\mathrm{C}$. If $(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{b}, \mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{c}, \mathrm{b})$ or $(\mathrm{c}, \mathrm{b}, \mathrm{a})$ then $f(a, b, c)=X$, where $X=(B-A) /(B+A)+(C-B) /(C+B)-(C-A) /(A+C)$. If $(A, B, C)=(a, b, c),(b, c, a)$ or (c, a, b), then $f(a, b, c)=-X$.

Put $B=A+h, C=B+k=A+h+k$, where $h, k \geq 0$. Since A, B, C are the sides of a triangle, we also have $A+B>C$ or $A>k$. So $X=h /(2 A+h)+k /(2 A+2 h+k)-(h+$ $\mathrm{k}) /(2 \mathrm{~A}+\mathrm{h}+\mathrm{k})=\mathrm{hk}(\mathrm{h}+\mathrm{k}) /((2 \mathrm{~A}+\mathrm{h})(2 \mathrm{~A}+\mathrm{h}+\mathrm{k})(2 \mathrm{~A}+2 \mathrm{~h}+\mathrm{k}))$. This is obviously non-negative. We claim also that it is $<1 / 20$. That is equivalent to: $20 \mathrm{~h}^{2} \mathrm{k}+20 \mathrm{hk}^{2}<(2 \mathrm{~A}$ $+h)(2 A+h+k)(2 A+2 h+k)$. Since $k<A$ it is sufficient to show that $20 h^{2} k+20 h^{2} \leq$ $(2 \mathrm{k}+\mathrm{h})(2 \mathrm{k}+\mathrm{h}+\mathrm{k})(2 \mathrm{k}+2 \mathrm{~h}+\mathrm{k})=18 \mathrm{k}^{3}+27 \mathrm{hk}^{2}+13 \mathrm{~h}^{2} \mathrm{k}+2 \mathrm{~h}^{3}$ or $18 \mathrm{k}^{3}+7 \mathrm{hk}^{2}-7 \mathrm{~h}^{2} \mathrm{k}+$ $2 h^{3} \geq 0$. But $7 \mathrm{k}^{2}-7 \mathrm{hk}+2 \mathrm{~h}^{2}=7(\mathrm{k}-\mathrm{h} / 2)^{2}+\mathrm{h}^{2} / 4 \geq 0$ and h and k are non-negative, so $18 \mathrm{k}^{3}+\mathrm{h}\left(7 \mathrm{k}^{2}-7 \mathrm{hk}+2 \mathrm{~h}^{2}\right) \geq 0$.

Thus we have established that $0<=\mathrm{X}<1 / 20$, which shows that $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})<1 / 20$, which is slightly stronger than the required result.

1989/4. The key to getting started is to notice that angle $\mathrm{AQB}=90^{\circ}$.

Angle $\mathrm{BAQ}=90^{\circ}-\mathrm{B} / 2$, so angle $\mathrm{OAQ}=90^{\circ}-\mathrm{B} / 2-\mathrm{A} / 2=\mathrm{C} / 2$. So $\mathrm{OQ}=\mathrm{AO} \sin \mathrm{C} / 2$. Thus we have to show that $\mathrm{MP}=\mathrm{BC} \sin \mathrm{C} / 2$.

Let the incircle touch AB at L and let Y be the midpoint of ML (also the intersection of ML with AO). Angle NMC $=90^{\circ}-\mathrm{C} / 2$. It is also A/2 + angle MPY, so angle MPY $=90$ $-\mathrm{C} / 2-\mathrm{A} / 2=\mathrm{B} / 2$. Hence $\mathrm{MP}=\mathrm{MY} / \sin \mathrm{B} / 2$. We have $\mathrm{MY}=\mathrm{MO} \sin M O A=r \cos \mathrm{~A} / 2$ (where r is the inradius, as usual). So $\mathrm{MP}=(\mathrm{r} \cos \mathrm{A} / 2) / \sin \mathrm{B} / 2$. We have $\mathrm{BC}=\mathrm{BN}+$ $\mathrm{NC}=\mathrm{r}(\cot \mathrm{B} / 2+\cot \mathrm{C} / 2)$, so MP/BC $=(\cos \mathrm{A} / 2) /(\sin \mathrm{B} / 2(\cot \mathrm{~B} / 2+\cot \mathrm{C} / 2))$. Hence $\mathrm{MP} /(\mathrm{BC} \sin \mathrm{C} / 2)=(\cos \mathrm{A} / 2) /(\cos \mathrm{B} / 2 \sin \mathrm{C} / 2+\sin \mathrm{B} / 2 \cos \mathrm{C} / 2)=\cos \mathrm{A} / 2 / \sin (\mathrm{B} / 2+$ $C / 2)=1$.

1989/5. We show that to obtain $f(n)$, one writes n in base 2 and then reads it in base 3 For example $12=1100_{2}$, so $f(12)=1100_{3}=36$. Let $g(n)$ be defined in this way. Then certainly $\mathrm{g}(1)=1$. Now $2 \mathrm{n}+1$ has the same binary expansion as 2 n except for a final 1 , so $g(2 n+1)=g(2 n)+1$. Similarly, $2 n$ has the same binary expansion as n with the addition of a final zero. Hence $g(2 n)=3 g(n)$. So g is the same as f. Hence the set of all m such that $m=f(n)$ for some n is the the set of all m which can be written in base 3 without a digit 2 .

1989/6. Put $\mathrm{A}=\mathrm{a}-1$ and the equation becomes $\mathrm{A}(2 \mathrm{~A}+1)=\mathrm{b}(3 \mathrm{~b}+1)$. Let d be the greatest common divisor of A and b. Put $A=d x, b=d y$. Then $x(2 d x+1)=y(3 d y+1)$. Since x and y are coprime, x must divide $3 \mathrm{dy}+1$. So put $3 \mathrm{dy}+1=\mathrm{nx}$. Then $2 \mathrm{dx}+1=$ $n y$. Solving for x and y in terms of n and d we get $x=(n+3 d) /\left(n^{2}-6 d^{2}\right), y=(n+$ $2 d) /\left(n^{2}-6 d^{2}\right)$.

So we would certainly be home if we could show that there were infinitely many solutions to $\mathrm{n}^{2}-6 \mathrm{~d}^{2}=1$. It is not hard to find the first few: $1^{2}-6.0^{2}=1,5^{2}-6.2^{2}=1$, $49^{2}-6.20^{2}=1$. We notice that $49^{2}=2.5^{2}-1$, so we wonder whether $\mathrm{n}=2.49^{2}-1$ might be another solution and indeed we find it gives $\mathrm{d}=1960=2.49 .20$. This suggests we try $\left(2 n^{2}-1\right)^{2}-6(2 n d)^{2}=4 n^{4}-4 n^{2}+1-24 n^{2} d^{2}=4 n^{2}\left(n^{2}-6 d^{2}-1\right)+1=1$. So there are indeed infinitely many solutions to $\mathrm{n}^{2}-6 \mathrm{~d}^{2}=1$ and we are done.

1990/1. We claim that if $2^{m}<=n<2^{m+1}$, then $f(n)=2^{m+1}-n-1$. Put $r=2^{m+1}-n$. Then the claim follows by induction on r. Hence $f\left(2^{1990}\right)=2^{1990}-1$.

1990/2. $\angle \mathrm{AEI}=\angle \mathrm{AME}=90^{\circ}$, so AEI and AME are similar. Hence $\mathrm{AM} / \mathrm{AE}=\mathrm{AE} / \mathrm{AI}$ or $\mathrm{AM} \cdot \mathrm{AI}=\mathrm{AE}^{2} . \mathrm{AE}$ is tangent to the incircle, so $\mathrm{AE} 2=\mathrm{AP} \cdot \mathrm{AD}$. Hence $\mathrm{AM} \cdot \mathrm{AI}=$ $A P \cdot A D$, so if P, M, I, D are not collinear, then they are cyclic.

1990/3. The first part is trivial. If p does not divide $(x+b)$, then it does not divide $(x+b)^{2}$, so it does not divide $(x+b)^{2}+c$. On the other hand, if p does divide $x+b$, then p^{2} divides $(\mathrm{x}+\mathrm{b})^{2}$, so p^{2} does not divide $(\mathrm{x}+\mathrm{b})^{2}+\mathrm{c}$.

For the second part, we use induction on r. For $r=1$, we are given that q divides $f(n)$. Now suppose that q^{r} divides $f(N)$ for some N. If q^{r+1} divides $f(N)$, then we are done. So suppose q^{r+1} does not divide $f(N)$, so $f(N)=q^{r} h$ where q does not divide h. We have $f\left(N+k q^{r}\right)=f(N)+q^{r}(2 N+2 b) k=q^{r} h+q^{r}(2 N+2 b) k$. Now q divides $(N+b)^{2}+c$, and does not divide c , so it does not divide $(\mathrm{N}+\mathrm{b})^{2}$ and hence does not divide $\mathrm{N}+\mathrm{b}$. It is odd, so it does not divide $2 N+2 b$. Hence we can find k such that $k(2 N+2 b)=-h$ mod q. Then we have $\mathrm{q}^{\mathrm{r}+1}$ divides $\mathrm{f}\left(\mathrm{N}+\mathrm{kq}^{\mathrm{r}}\right)$, which completes the induction.

1990/4. Answer: C^{\prime} touches T at the intersection of T and the line AM the locus of the center is a parabola vertex B
the circle center A radius AB is orthogonal to all circles C^{\prime}
Solution Let O be the center of C . Let the line AM meet T at N . Let the perpendicular to T at N meet the line OM at O^{\prime}. Then $\angle \mathrm{O}^{\prime} \mathrm{NM}=\angle \mathrm{MAB}\left(\mathrm{O}^{\prime} \mathrm{N}\right.$ parallel to AB , because
both perpendicular to $T)=\angle \mathrm{OMA}(\mathrm{OM}=\mathrm{OA})=\angle \mathrm{O}^{\prime} \mathrm{MN}$. So $\mathrm{O}^{\prime} \mathrm{M}=\mathrm{O}^{\prime} \mathrm{N}$. Hence O^{\prime} is the center of C^{\prime}.

Take B to be the origin and A to be the point ($2 \mathrm{a}, 0$), so O is $(\mathrm{a}, 0)$ and C has radius a. If O^{\prime} is (x, y), then we require that $O^{\prime} O=x+a$ or $(x-a)^{2}+y^{2}=(x+a)^{2}$, or $y^{2}=4 a x$, which is a parabola with vertex B and axis the x -axis.

Triangles $\mathrm{AMB}, \mathrm{ABN}$ are similar $\left(\angle \mathrm{AMB}=\angle \mathrm{ABN}=90^{\circ}\right)$, so $\mathrm{AM} / \mathrm{AB}=\mathrm{AB} / \mathrm{AN}$ and hence $\mathrm{AM} \cdot \mathrm{AN}=\mathrm{AB}^{2}$. Now consider the circle center A radius AB . It must meet the circle C^{\prime}, because it contains the point M. Suppose it meets at X. Then $A X^{2}=A B^{2}=$ $A M \cdot A N$, so $A X$ is tangent to C^{\prime} and hence the circles are orthogonal.

1990/5.

1990/6. Without loss of generality, $f(x)=x^{3}-a x^{2}+b x-c$, where a, b, c are rational. Since the graph touches the x-axis, there is a repeated root, so we may take the roots to be h, h, k. Hence $2 h+k=a, 2 h k+k^{2}=b, h^{2} k=c$. Hence $a^{2}-3 b=(h-k)^{2}$. Put $r= \pm \sqrt{ }\left(a^{2}\right.$ $-3 b$), where the sign is chosen so that $h=a / 3+r / 3, k=a / 3-2 r / 3$. We need to show that r is rational. If r is zero there is nothing to prove, so assume r is non-zero.

We have $9 h^{2}=2 a^{2}-3 b+2 a r$. Hence $27 h^{2} k=-2 a^{3}+9 a b+\left(6 b-2 a^{2}\right) r$. But $27 h^{2} k=27 c$. So $r=\left(27 c+2 a^{3}-9 a b\right) /\left(2\left(3 b-a^{2}\right)\right)$. Note that $3 b-2 a^{2}$ is non-zero because r is non-zero. So r is a rational combination of a, b, c and hence is rational.

1991/1. Answer: $14,6,2,-2,-6,-10$.
If every vertex is 1 , we get 14 and that is clearly the highest possible total. The lowest possible total cannot be lower than -14, but we cannot even achieve that because if all the vertices are -1 , then all the faces are 1 .

If we change a vertex, then we also change three faces. If the vertex and the three faces are all initially the same, then we make a change of ± 8. If three are of one kind and one the opposite, then we make a change of ± 4. If two are of one kind and two the opposite, then we make no change. Thus any sequence of changes must take us to $14+4 n$ for some integer n. But we have already shown that the total is greater than -14 and at most 14 , so the only possibilities are $-10,-6,-2,2,6,10$ and 14 .

We show that 10 is not possible. If more than 2 vertices are -1 , then the vertex total is at most 2 , there are only 6 faces, so the total is less than 10 . If all vertices are 1 , then the
total is 14 . If all but one vertex is 1 , then the total is 6 . So the only possibility for 10 is just two vertices -1 . But however we choose any two vertices, there is always a face containing only one of them, so at least one face is -1 , so the face total is at most 4 and the vertex total is 4 , so the total is less than 10 . The other totals are possible, for example:

14: all vertices 1
6 : one vertex -1 , rest 1
2 : three vertices of one face -1 , rest 1
-2 : all vertices -1
-6: all vertices but one -1
-10: two opposite corners 1 , rest -1

1991/2.

1991/3.
1991/4. Answer: 35964
There are $4.3=12$ numbers with a given digit of n in the units place. Similarly, there are 12 with it in the tens place and 12 with it in the hundreds place. So the sum of the 3 digit numbers is $12.111(a+b+c+d+e)$, where $n=a b c d e$. So $8668 a=332 b+1232 c$ $+1322 \mathrm{~d}+1331 \mathrm{e}$. We can easily see that $\mathrm{a}=1$ is too small and $\mathrm{a}=4$ is too big, so $\mathrm{a}=2$ or 3 . Obviously e must be even. 0 is too small, so $\mathrm{e}=2,4,6$ or 8 . Working mod 11 , we see that $0=2 b+2 d$, so $b+d=11$. Working mod 7 , we see that $2 a=3 b+6 d+e$. Using the mod 11 result, $b=2, d=9$ or $b=3, d=8$ or $b=4, d=7$ or $b=5, d=6$ or $b=6, d=$ 5 or $b=7, d=4$ or $b=8, d=3$ or $b=9, d=2$. Putting each of these into the mod 7 result gives $2 \mathrm{a}-\mathrm{e}=4,1,5,2,6,3,0,4 \bmod 7$. So putting $\mathrm{a}=2$ and remembering that e must be $2,4,6,8$ and that all digits must be different gives $a, b, d, e=2,4,7,6$ or 2,7 , 4,8 or $2,8,3,4$ as the only possibilities. It is then straightforward but tiresome to check that none of these give a solution for c. Similarly putting $a=4$, gives $a, b, d, e=3,4,7$, 8 or $3,5,6,4$ as the only possibilities. Checking, we find the solution above and no others.

1991/5. Answer: $1,2,4,5,8,9,10,13,16,17,18,20,25,26,29,32,34,36,37$, $40,41,45,49,50,52,53,58,61,64,65,68,72,73,74,80,81,82,85,89,90,97,98,100$
Solution: We have $p(m, n)=(m-2 n)^{2}+(m-n)^{2}$, so $p(2 a-b, a-b)=a^{2}+b^{2}$. Hence the range of p is just the sums of two squares.
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2}$, which establishes that if h and k are in the range, then so is hk.

1991/6. Take H^{\prime} so that M is the midpoint of HH '. The circle diameter NH^{\prime} meets the ine through H perpendicular to MN in two points (in general), either of which we may take as A. Then B is the reflection of A in M, and C is the reflection of A in N.

To see that this works, note that M is the midpoint of HH^{\prime} and AB , so AHBH ' is a parallelogram. Hence AH' is parallel to BH and hence perpendicular to AC. In other words $\angle \mathrm{NAH}^{\prime}=90^{\circ}$, so A lies on the circle diameter NH^{\prime}. MN is parallel to BC , so A lies on the perpendicular to MN through H .

1992/1. It is easy to compile the following table, from which we see that a_{n} is periodic with period 20 , and indeed the sum for each decade (from 0 to 9) is 35 . Thus the sum for 1992 is $199 \cdot 35+5+6+8=6984$.
n $\quad \begin{array}{llllllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$
$a_{\mathrm{n}} \quad \begin{array}{lllllllllllllllllll}0 & 1 & 3 & 6 & 0 & 5 & 1 & 8 & 6 & 5 & 5 & 6 & 8 & 1 & 5 & 0 & 6 & 3 & 1\end{array} 0$

1992/2. Answer: $\sum \mathrm{a}_{\mathrm{a}}$

Solution: with no loss of generality $a_{1}>a_{2}>\ldots>a_{n}$. The graph of each $a_{i} /\left(x+a_{i}\right)$ is a rectangular hyberbola with asymptotes $x=-a_{i}$ and $y=0$. So it is not hard to see that the graph of $f(x)$ is made up of $n+1$ strictly decreasing parts. For $x<-a_{1}, f(x)$ is negative. For $x \in\left(-a_{i},-a_{i+1}\right)$, $f(x)$ decreases from ∞ to $-\infty$. Finally, for $x>-a_{n}, f(x)$ decreases from ∞ to 0 . Thus $f(x)=1$ at n values $b_{1}<b_{2}<\ldots<b_{n}$, and $f(x) \geq 1$ on the n intervals $\left(-a_{1}, b_{1}\right)$, $\left(-a_{2}, b_{2}\right), \ldots,\left(-a_{n}, b_{n}\right)$. So the sum of the lengths of these intervals is $\sum\left(a_{i}+b_{i}\right)$. We show that $\sum b_{i}=0$.

Multiplying $f(x)=1$ by $\Pi\left(x+a_{j}\right)$ we get a polynomial of degree n :

$$
\Pi\left(x+a_{j}\right)-\sum_{i}\left(a_{i} \prod_{j \neq i}\left(x+a_{j}\right)\right)=0
$$

The coefficient of x^{n} is 1 and the coefficient of x^{n-1} is $\sum a_{j}-\sum a_{i}=0$. Hence the sum of the roots, which is $\sum b_{i}$, is zero.

1992/3. Take vectors centered at the center O of the triangle. Write the vector OA as \mathbf{A} etc. Then $\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}=(\mathbf{P}-\mathbf{A})^{2}+(\mathbf{P}-\mathbf{B})^{2}+(\mathbf{P}-\mathbf{C})^{2}=3 \mathrm{P}^{2}+\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}\right)-$
$2 \mathbf{P} .(\mathbf{A}+\mathbf{B}+\mathbf{C})=15 \mathrm{P}^{2}$, since $\mathrm{A}^{2}=\mathrm{B}^{2}=\mathrm{C}^{2}=4 \mathrm{P}^{2}$ and $\mathbf{A}+\mathbf{B}+\mathbf{C}=0$. Finally the side is 2 , so an altitude is $\sqrt{3}$ and the inradius is $(\sqrt{3}) / 3=1 / \sqrt{3}$, so $\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}=15 / 3=5$.

Take Q outside the triangle so that $\mathrm{BQ}=\mathrm{BP}$ and $\mathrm{CQ}=\mathrm{AP}$. Then BQC and BPA are congruent, so $\angle \mathrm{ABP}=\angle \mathrm{CBQ}$ and hence $\angle \mathrm{PBQ}=60^{\circ}$, so PBQ is equilateral. Hence PQ is PB and PQC has sides equal to $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}$. If we construct two similar points outside the other two sides then we get a figure with total area equal to 2 area ABC and to 3 area $\mathrm{PQC}+$ area of three equilateral triangles sides $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}$. Hence 3 area $\mathrm{PQC}=2$ area ABC - area $\mathrm{ABC}\left(\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}\right) / \mathrm{PA}^{2}=(3 / 4)$ area $\mathrm{ABC}=(3 \sqrt{ } 3) / 4$. So area $\mathrm{PQC}=$ $(\sqrt{3}) / 4$.

1992/4. Answer: $(1992 \cdot 1996,4 \cdot 1992+8),(1992 \cdot 1988,-4 \cdot 1992+8)$
Solution: a_{n} satisfies a standard linear recurrence relation with general solution $a_{n}=n^{2}+$ An $+k$. But $a_{n}=0$, so $k=0$. Hence $a_{n}=n^{2}+$ An. If you are not familiar with the general solution, then you can guess this solution and prove it by induction.

Similarly, $b_{n}=B n+8$. Hence $a_{n}{ }^{2}+b_{n}{ }^{2}=n^{4}+2 A n^{3}+\left(A^{2}+B^{2}\right) n^{2}+16 B n+64$. If this is a square, then looking at the constant and n^{3} terms, it must be ($n^{2}+A n+8$). Comparing the other terms, $\mathrm{A}=\mathrm{B}= \pm 4$.

1992/5.

1992/6.

1993/1. Answer: 2, 11.
Let x be a palindrome and x^{\prime} the next highest palindrome. If $x<101$, then it is easy to see by inspection that $\mathrm{x}^{\prime}-\mathrm{x}=1,2$ or 11 , so the only prime differences are 2 and 11 .

So assume $\mathrm{x}>100$. If x and x ' have the same final digit, then their difference is divisible by 10 and hence not prime. So they must have different digits. Thus either $x=d 9 \ldots 9 \mathrm{~d}$ and $\mathrm{x}^{\prime}=\mathrm{d}^{\prime} 0 \ldots 0 \mathrm{~d}^{\prime}$, where $\mathrm{d}<9$ and $\mathrm{d}^{\prime}=\mathrm{d}+1$, or x^{\prime} has one more digit than x and $\mathrm{d}=9$, d^{\prime} $=1$. In the first case $x^{\prime}-x=11$. In the second case $x^{\prime}-x=2$. So again the only prime differences are 2 and 11 .

1993/2. Let the vertices X, Y of the polygon be the two which are furthest apart. The polygon must lie between the lines through X and Y perpendicular to XY (for if a vertex Z lay outside the line through Y , then $\mathrm{ZY}>\mathrm{XY}$). Take two sides of a rectangle along these lines and the other two sides as close together as possible. There must be a vertices U and V on each of the other two sides. But now the area of the rectangle is twice the area of XUYV, which is at most the area of the polygon. [In the case of a triangle one side of the rectangle will be XY.]

1993/3. Answer: $f(x)=x^{2}$.
Note that (1) implies f is $(1,1)$.

Put $y=1$. Then $f(f(x))=x^{2} f(x)$.
Put $y=f(z)$, then $f(f(z) f(x))=x^{2} f(x f(z))=x^{2} z^{2} f(x z)=f(f(x z))$. But f is $(1,1)$ so $f(x z)=f(x) f(z)$.

Now suppose $f(m)>m^{2}$ for some m. Then by (1), $f(f(m))>f\left(m^{2}=f(m . m)=f(m)^{2}\right.$. But $f(f(m))=m^{2} f(m)$, so $m^{2}>f(m)$. Contradiction.
Similarly, suppose $f(m)<m^{2}$. Then $m^{2} f(m)=f(f(m))<f\left(m^{2}\right)=f(m)^{2}$, so $m^{2}<f(m)$. Contradiction. So we must have $f(m)=m^{2}$.

1993/4. Put $\mathrm{BD}=\mathrm{x}, \mathrm{CE}=\mathrm{y}, \mathrm{BC}=\mathrm{a}$. Then since the two tangents from B to the incircle are of equal length, and similarly the two tangents from D and E, we have $E D+B C=$ $\mathrm{BD}+\mathrm{CE}$, or $\mathrm{ED}=\mathrm{x}+\mathrm{y}-\mathrm{a}$. By the cosine law, $\mathrm{ED}^{2}=\mathrm{AE}^{2}+\mathrm{AD}^{2}-\mathrm{AE} \cdot \mathrm{AD}$.
Substituting and simplifying, we get $a=3 x y /(x+y)$. Hence $A D / D B=(2 y-x) /(x+y)$ and $A E / E C=(2 x-y) /(x+y)$ with sum 1 .

1993/5. Answer: $\mathrm{n}=3$ (equilateral triangle), 5 (regular pentagon).
Solution: There are $n(n-1) / 2$ pairs of points. Each has a point of S on its bisector. But each point of S is on at most two bisectors, so $2 n \geq n(n-1) / 2$. Hence $n \leq 5$.

The equilateral triangle and regular pentagon show that $\mathrm{n}=3,5$ are possible.
Consider $\mathrm{n}=4$. There are 6 pairs of points, so at least one point of S must be on two bisectors. wlog A is on the bisectors of BC and BD . But then it is also on the bisector of CD. Contradiction.

1993/6. Suppose there is a member of A with last digit d. Then every member of B must have one of two possible last digits. Suppose there are members of B with both possibilities. Then every member of A must have last digit d. So either every member of A has the same last digit or every member of B has the same last digit (or both).
Suppose every member of A has the same last digit d.
But now if n belongs to B and $n+d$ has last digit 0 , then $n+1+d$ has last digit 1 Moreover, if m is any member of A, then $m+n$ has last digit 0 and other digits all 0 or 1 . Hence $\mathrm{m}+\mathrm{n}+1$ last last digit 1 and other digits all 0 or 1 , so $\mathrm{n}+1$ must also belong to B . Similarly, if n is in B and $\mathrm{n}+\mathrm{d}$ has last digit 1 , then $\mathrm{n}-1$ must also belong to B . So in either case there are infinitely many pairs of consecutive numbers in B.

1994/1. Any even number 2 n can be written as 22 in base $\mathrm{n}-1$. In particular $1994=$ 22996 .

We have to show that we cannot write $1993=\mathrm{aaa} \ldots \mathrm{a}_{\mathrm{b}}$. If the number has n digits, then $1993=a\left(1+b+\ldots+b^{n-1}\right)=a\left(b^{n}-1\right) /(b-1)$. But 1993 is prime, so a must be 1 . Hence $\mathrm{b}^{\mathrm{n}-1}+\ldots+\mathrm{b}-1992=0$. So b must divide $1992=2^{3} 3.83$. We cannot have $\mathrm{n}=2$, for then $\mathrm{b}=1992$ and we require $\mathrm{b}<1992$. So $\mathrm{n}>2$. But $83^{2}=6889>1993$, so b must divide 24 . Hence $b=2,3,4,6,8,12$, or 24 . But we can easily check that none of these work:

$$
\begin{aligned}
& 1+2+2^{2}+\ldots+2^{9}=1023,1+\ldots+2^{10}=2047 . \\
& 1+3+\ldots+3^{6}=1093,1+\ldots+3^{\wedge} 7=3280 \\
& 1+4+\ldots+4^{5}=1365,1+\ldots+4^{6}=5461 \\
& 1+6+\ldots 6^{4}=1555,1+\ldots+6^{5}=9331 \\
& 1+8+8^{2}+8^{3}=585,1+\ldots+8^{4}=4681 \\
& 1+12+12^{2}+12^{3}=1885,1+\ldots+12^{4}=22621 \\
& 1+24+24^{2}=601,1+\ldots+24^{3}=14425
\end{aligned}
$$

1994/2. Answer: $(\mathrm{h} / 2+\mathrm{k} / 2) \sqrt{ }\left(\mathrm{hk} / 2-\mathrm{h}^{2} / 4\right)$, where $\mathrm{h}=|\mathrm{CD}|, \mathrm{k}=|\mathrm{AB}|$
Solution Let the circle have center O on AB and radius r. Let $\angle \mathrm{OAD}=\theta, \angle \mathrm{OBC}=\varphi$. Since ABCD is cyclic, $\angle \mathrm{ADC}=180^{\circ}-\varphi$, so $\angle \mathrm{ODA}=90^{\circ}-\varphi / 2$. If AD touches the circle at X, then $A D=A X+X D=r \cot \theta+r \tan (\varphi / 2)$. Similarly, $B C=r \cot \varphi+r \tan (\theta / 2)$. Put $t=\tan (\theta / 2)$. Then $\cot \theta=\left(1-t^{2}\right) / 2 t$, so $\cot \theta+\tan (\theta / 2)=\left(1+t^{2}\right) / 2 t=1 / \sin \theta$. Similarly for φ, so $\mathrm{AD}+\mathrm{BC}=\mathrm{r} / \sin \theta+\mathrm{r} / \sin \varphi=\mathrm{AO}+\mathrm{OB}=\mathrm{AB}$

Suppose AD and BC meet at H (we deal below with the case where they are parallel). Then HCD and HAB are similar, so area $\mathrm{HCD}=\left(\mathrm{CD}^{2} / \mathrm{AB}^{2}\right)$ area HAB and area ABCD $=\left(1-\mathrm{CD}^{2} / \mathrm{AB}^{2}\right)$ area HAB . Also $\mathrm{AB} / \mathrm{CD}=\mathrm{HA} / \mathrm{HC}=\mathrm{HB} / \mathrm{HD}=(\mathrm{HA}+\mathrm{HB}) /(\mathrm{HC}+\mathrm{HD})=$ $(\mathrm{HA}+\mathrm{HB}) /(\mathrm{HB}-\mathrm{BC}+\mathrm{HA}-\mathrm{DA})=(\mathrm{HA}+\mathrm{HB}) /(\mathrm{HA}+\mathrm{HB}-\mathrm{AB})$. Hence $\mathrm{HA}+\mathrm{HB}=\mathrm{AB}^{2} /(\mathrm{AB}-$ CD), which is fixed. Now for fixed HA +HB we maximise the area of HAB by taking $\mathrm{HA}=\mathrm{HB}$ and hence $\mathrm{AD}=\mathrm{BC}$.

Put $h=C D, k=A B$. So $k \cos \theta+h=k$. Hence $\cos \theta=(1-h / k)$. Hence $\sin \theta=\sqrt{ }(2 h / k-$ $\left.h^{2} / k^{2}\right)$. So area $A B C D=1 / 2(h+k) 1 / 2 k \sin \theta=(h / 2+k / 2) \sqrt{\left(h k / 2-h^{2} / 4\right)(*) . ~}$

If $A D$ and $B C$ are parallel then A and B must lie on the circle, so that $\angle D A B=\angle A B C$ $=90^{\circ}$. But ABCD is cyclic, so it must be a rectangle. Hence $\mathrm{AB}=\mathrm{CD}$ and area ABCD $=\mathrm{k}^{2} / 2$. In this case $\left(^{*}\right)$ still gives the correct answer.

1994/3. Answer

n odd, n is minimum
n even, n^{2} is minimum

Solution If n is odd, touch each bulb in the first column. Then bulbs in the first column are each switched n times, which is odd and so end up on. All other bulbs are switched just once, and so end up on. n is obviously minimal, because if $m<n$, then there is a bulb which is not switched at all (there must be a column with no bulb touched and a row with no bulb touched, so the bulb in that column and row is not switched).

In n is even, touch each bulb. Then each bulb is switched $2 \mathrm{n}-1$ times, so ends up on. We show that it is not possible to do better.

Note first that there is no benefit in touching a bulb more than once, so each must be touched zero of one times. Thus we can represent the scheme as an array of 0 s and 1 s , where 0 means that the corresponding bulb is not touched, and 1 means that it is touched.

Let A, B, C, D be four values at the corners of a rectangle. We claim that A+B has the same parity as $\mathrm{C}+\mathrm{D}$. Let L_{AB} be the number of 1 s in the row AB are touched, similarly L_{BC} (the number of 1 s in the column BC), $\mathrm{L}_{\mathrm{CD}}, \mathrm{L}_{\mathrm{DA}}$. Since bulb A is switched we must have $\mathrm{L}_{\mathrm{AB}}+\mathrm{L}_{\mathrm{DA}}+\mathrm{A}$ odd (note that $\mathrm{L}_{\mathrm{AB}}+\mathrm{L}_{\mathrm{DA}}$ double-counts the no. of touches of A) Similarly, $\mathrm{L}_{\mathrm{BC}}+\mathrm{L}_{\mathrm{CD}}+\mathrm{C}$ is odd, so $\mathrm{A}+\mathrm{C}+\left(\mathrm{L}_{\mathrm{AB}}+\mathrm{L}_{\mathrm{BC}}+\mathrm{L}_{\mathrm{CD}}+\mathrm{L}_{\mathrm{DA}}\right)$ is even. Similarly considering B and D, we find that $B+D+\left(L_{A B}+L_{B C}+L_{C D}+L_{D A}\right)$ is even, so $A+C$ and $\mathrm{B}+\mathrm{D}$ have the same parity. Adding $\mathrm{B}+\mathrm{C}$ to both, we get that $\mathrm{A}+\mathrm{B}$ and $\mathrm{C}+\mathrm{D}$ have the same parity. It follows that either $A=D$ and $B=C$, or $A \neq D$ and $B \neq D$

Keeping A and B fixed, we can now vary C (and hence D). It follows that either the row through B matches that through A, or it has every cell different (to the corresponding cell in row A). Similarly for the other rows. So we have k rows of one type and $n-k$ rows which are equal to its "complement". Suppose first that $\mathrm{k}=\mathrm{n}$, so that all rows are the same. If we have all 1 s , then we have a solution. If we have all 0 s , we obviously do not have a solution. So suppose there is a 0 and a 1 in each row. Then the total count at a 1 is $\mathrm{n}-1$ higher than at a 0 (because of the extra $\mathrm{n}-11 \mathrm{~s}$ in the same column). So they cannot both be odd (because n is even). Contradiction.

Finally suppose there is a row and a complement row. So position A in one is 1 , then position B in the same column in the other has 0 . If a row has $h 1 s$, then a complement row has $n-h 1 s$. The column has $z 1 s$, so A has $z+h-1$ or $z+n-h-11 s$, and B has $z+h$ or $\mathrm{z}+\mathrm{n}-\mathrm{h} 1 \mathrm{~s}$. But since n is even, $\mathrm{z}+\mathrm{h}$ and $\mathrm{z}+\mathrm{n}-\mathrm{h}$ have the same parity, so A and B have opposite parity. Contradiction. So the only solution for n even is all 1 s .

1994/4. Let the angle bisector of A meet BC at A^{\prime}. Let the perpendicular bisector of AA' meet the line BC at X. Take the circle center X through A and A'. Similarly, let the angle bisector of B meet $A C$ at B^{\prime} and let the perpendicular bisector of B^{\prime} meet the line $A C$ at Y. Take the circle center Y through B and $B '$. The two circles meet at a point P inside the triangle, which is the desired point.

PAB and PED are similar, so $\mathrm{DE} / \mathrm{AB}=\mathrm{PD} / \mathrm{PB}$. Similarly, $\mathrm{DF} / \mathrm{AC}=\mathrm{PD} / \mathrm{PC}$, so $\mathrm{DE} / \mathrm{DF}$ $=(\mathrm{AB} / \mathrm{AC})(\mathrm{PC} / \mathrm{PB})$. Thus we need $\mathrm{PB} / \mathrm{PC}=\mathrm{AB} / \mathrm{AC}$. So P must lie on the circle of Apollonius, which is the circle we constructed with center X. Similarly, it must lie on the circle of Apollonius with center Y and hence be one of their points of intersection. It
also lies on the third circle and hence we choose the point of intersection inside the triangle.

1994/5. Answer: smallest integer such that $k^{r} \geq \mathrm{n}$.
Solution: We can form at most k^{r} distinct sums, so k^{r} must be $\geq n$.
Now consider $\mathrm{A}_{1}=\{0,1,2, \ldots, \mathrm{k}-1\}, \mathrm{A}_{2}=\{0, \mathrm{k}, 2 \mathrm{k}, \ldots,(\mathrm{k}-1) \mathrm{k}\}, \mathrm{A}_{3}=\left\{0, \mathrm{k}^{2}, 2 \mathrm{k}^{2}, \ldots\right.$, $\left.(k-1) k^{2}\right\}, \ldots, A_{r}=\left\{0, \mathrm{k}^{r-1}, 2 \mathrm{k}^{r-1}, \ldots,(\mathrm{k}-1) \mathrm{k}^{r-1}\right\}$. Then for any non-negative integer $m<\mathrm{k}^{r}$, we can write m with r digits in base k (using leading zeros as necessary) and hence as a sum of one element from each A_{i}. This subset works for $(\mathrm{k}-1) \mathrm{k}^{\mathrm{r}-1}<\mathrm{n} \leq \mathrm{k}^{\mathrm{r}}$. For smaller n above $(k-1)^{\mathrm{r}}$ we cannot use all the elements given above, but we do not need them, so we just replace the elements which are too large by arbitrary elements under n.

For example, suppose $n=17, r=4$. We need $k=3$. So we form $A_{1}=\{0,1,2\}, A_{2}=\{0$, $3,6\}, \mathrm{A}_{3}=\{0,9,18\}, \mathrm{A}_{4}=\{0,27,54\}$. Now 18, 27, 54 are unnecessary, so we pad out A_{3} and A_{4} with other elements. We could take $A_{3}=\{0,1,9\}, A_{4}=\{0,1,2\}$.

1994/6.

1995/1. Answer: any non-negative integer $=0,1,4$ or $7 \bmod 9$
$0^{2}=0,(\pm 1)^{2}=1,(\pm 2)^{2}=4,(\pm 3)^{2}=0,(\pm 4)^{2}=7 \bmod 9$, so the condition is necessary.
We exhibit squares which give these values.
$0 \bmod 9$. Obviously $0^{2}=0$. We have $9^{2}=81,99^{2}=9801$ and in general $9 \ldots 9^{2}=\left(10^{\mathrm{n}}-\right.$ $1)^{2}=10^{2 \mathrm{n}}-2.10^{\mathrm{n}}+1=9 \ldots 980 \ldots 01$, with digit sum 9 n .
$1 \bmod 9$. Obviously $1^{2}=1$ with digit sum 1 , and $8^{2}=64$ with digit sum 10 . We also have $98^{2}=9604,998^{2}=996004$, and in general $9 \ldots 98^{2}=\left(10^{\mathrm{n}}-2\right)^{2}=10^{2 \mathrm{n}}-4.10^{\mathrm{n}}+4=$ $9 \ldots 960 \ldots 04$, with digit sum $9 n+1$.
$4 \bmod 9$ Obviously $2^{2}=4$ with digit sum 4 , and $7^{2}=49$ with digit sum 13 . Also $97^{2}=$ 9409 with digit sum $22,997^{2}=994009$ with digit sum 31 , and in general $9 \ldots 97^{2}=\left(10^{n}-\right.$ $3)^{2}=10^{2 \mathrm{n}}-6.10^{\mathrm{n}}+9=9 \ldots 940 \ldots 09$, with digit sum $9 \mathrm{n}+4$.
$7 \bmod 9$ Obviously $4^{2}=16$, with digit sum 7 . Also $95^{2}=9025$, digit sum $16,995^{2}=$ 990025 with digit sum 25 , and in general $9 \ldots 95^{2}=\left(10^{\mathrm{n}}-5\right)^{2}=10^{2 \mathrm{n}}-10^{\mathrm{n+1}}+25=$ $9 . . .90 . . .025$, with digit sum $9 n-2$.

1995/2. Answer: The only solution is the obvious, all $x_{i}=1$.
Solution: By Cauchy-Schwartz, $\left(\sum \mathrm{x}_{\mathrm{i}}{ }^{1 / 2}\right)^{2} \leq\left(\sum 1\right)\left(\& s u m \mathrm{x}_{\mathrm{i}}\right)$, with equality if and only if all x_{i} equal. In other words, if we put $x_{n+1}=\left(x_{1}+x_{2}+\ldots+x_{n}\right) / n$, then $\sum x_{i}^{1 / 2} \leq n x_{n+1}^{1 / 2}$. But since all $x_{i} \geq 1$, we have $x_{1}{ }_{1}^{1 / 2}+x_{2}{ }^{1 / 3}+x_{3}{ }^{1 / 4}+\ldots+x_{n}{ }^{1 /(n+1)} \leq \sum_{1 / 3} x_{i}^{1 / 2}$ with equality if and only if $x_{2}=x_{3}=\ldots=x_{n}=1$. Hence $x_{1}{ }^{1 / 2}+x_{2}{ }^{1 / 3}+x_{3}{ }^{1 / 4}+\ldots+x_{n}{ }^{1 /(n+1)} \leq x_{n+1}{ }^{1 / 2}$ with equality if and only if all $x_{i}=1$.

1995/3.
1995/4. Answer: smallest integer $\geq(2 n-1) / 3$ [so $2 m-1$ for $n=3 m-1,2 m$ for $n=3 m$, $2 \mathrm{~m}+1$ for $\mathrm{n}=3 \mathrm{~m}+1$]

Solution: There must be at least $\mathrm{n}-\mathrm{k}$ rows without a coin and at least $\mathrm{n}-\mathrm{k}$ columns without a coin. Let $r_{1}, r_{2}, \ldots, r_{n-k}$ be cells in the top row without a coin which are also in a column without a coin. Let $\mathrm{r}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \ldots, \mathrm{c}_{\mathrm{n}-\mathrm{k}}$ be cells in the first column without a coin which are also in a row without a coin. Each of the $2 \mathrm{n}-2 \mathrm{k}-1 \mathrm{r}_{\mathrm{i}}$ and c_{j} are on a different positive diagonal, so we must have $\mathrm{k} \geq 2 \mathrm{n}-2 \mathrm{k}-1$ and hence $\mathrm{k} \geq(2 \mathrm{n}-1) / 3$

Let (i, j) denote the cell in row i , col j . For $\mathrm{n}=3 \mathrm{~m}-1$, put coins in $(\mathrm{m}, 1)$, ($\mathrm{m}-1,2$), ($\mathrm{m}-$ $2,3), \ldots,(1, m)$ and in $(2 m-1, m+1),(2 m-2, m+2), \ldots,(m+1,2 m-1)$. It is easy to check that this works. For $n=3 m$, put an additional coin in $(2 m, 2 m)$, it is easy to check that works. For $n=3 m+1$ we can use the same arrangement as for $3 m+2$.

1995/5.

1995/6. Answer: we can get k arbitrarily close to 1
Solution: The basic idea is to take a block of integers $m+1, m+2, \ldots, M$ and to define $f(m+1)=m+2, f(m+2)=m+3, \ldots, f(M-1)=M, f(M)=m+1$. Then for any integer h in the block we have $f^{\mathrm{n}}(\mathrm{h}) \neq \mathrm{h}$ for $\mathrm{n}=1,2, \ldots, \mathrm{M}-\mathrm{m}-1$ and $\mathrm{f}^{\mathrm{M}-\mathrm{m}}(\mathrm{h})=\mathrm{h}$. Note that the ratio (M-m)/h is worst (smallest) for $\mathrm{h}=\mathrm{M}$.

For example, take the first block to be $1,2, \ldots, \mathrm{~N}$, the second block to be $\mathrm{N}+1, \ldots, \mathrm{~N}^{2}$, the third block, $N^{2}+1, \ldots, N^{3}$ and so on. Then for any integer n we have $f^{m}(n) \neq n$ for m

1996/1. Answer: 13.

Divide all the cubes into unit cubes. Then the 1996 cubes must each contain at least one unit cube, so the large cube contains at least 1996 unit cubes. But $12^{3}=1728<1996<$ $2197=13^{3}$, so it is certainly not possible for $\mathrm{n}<13$.

It can be achieved with 13 by $1.5^{3}+11.2^{3}+1984.1^{3}=13^{3}$ (actually packing the cubes together to form a $13 \times 13 \times 13$ cube is trivial since there are so many unit cubes).

1996/2. Applying Menelaus to the triangle ADC, we have (AM/MD)(BD/DC)(CN/NA) $=1$, so $(\mathrm{CN} / \mathrm{NA})=2$. Hence $\mathrm{AN} / \mathrm{AC}=1 / 3$. Applying Menelaus to the triangle BNC, we have $(\mathrm{BM} / \mathrm{MN})(\mathrm{AN} / \mathrm{AC})(\mathrm{CD} / \mathrm{DB})=1$, so $\mathrm{BM} / \mathrm{MN}=3$. That is true irrespective of whether $A B$ is tangent to the circle NBC.

If AB is tangent, then $\mathrm{AB}^{2}=\mathrm{AN} \cdot \mathrm{AC}=1 / 3 \mathrm{AC}^{2}$. Also angle $\mathrm{ABN}=$ angle BCN , so triangles $A N B$ and $A B C$ are similar. Hence $B C / B N=A C / A B$. Hence $(B C / B N)^{2}=3=$ BM/BN.

Conversely, if $(\mathrm{BC} / \mathrm{BN})^{2}=\mathrm{BM} / \mathrm{BN}$, then $(\mathrm{BC} / \mathrm{BN})^{2}=3$.
Now applying the cosine formula to AMN and AMB and using $\cos \mathrm{AMN}+\cos \mathrm{AMB}=$ 0 , we have $\left(3 A N^{2}-3 A M^{2}-3 M N^{2}\right)+\left(A B^{2}-A M^{2}-B M^{2}\right)=0$, so $A B^{2}+A C^{2} / 3=A D^{2}+$ $3 / 4 \mathrm{BN}^{2}$. Similarly from triangles ADC and ADB we get $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+\mathrm{BC}^{2} / 2$. So using $\mathrm{BN}^{2}=\mathrm{BC}^{2} / 3$ we get $2 \mathrm{AB}^{2}+2 / 3 \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$ and hence $(\mathrm{AC} / \mathrm{AB})^{2}=3=$ $(B C / B N)^{2}$. So $A C / A B=B C / B N$. Note that is not enough to conclude that triangles $A B C$ and $B N C$ are similar, because the common angle C is not between $A C$ and $A B$.
However, we have $A N / A B=(1 / 3) A C / A B=A B / A C$, so $A B^{2}=A N . A C$, so $A B$ is tangent to the circle NBC.

1996/3. We can regard the rows as lines and the columns as points. Black squares denote incidence. So line 3 contains point 4 if and only if square $(3,4)$ is black. The
condition about rectangles then means that there is at most one line through two distinct points.

Suppose we take the points to be $(\mathrm{a}, \mathrm{b}, \mathrm{c})$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are residues mod p , not all zero, and the coordinates are homogeneous, so that we regard $(a, b, c),(2 a, 2 b, 2 c), \ldots,((p-$ 1) $a,(p-1) b,(p-1) c)$ as the same point. That gives $\left(p^{3}-1\right) /(p-1)=p^{2}+p+1$ points, which is the correct number.

We can take lines to be $l \mathrm{x}+m \mathrm{y}+n \mathrm{z}=0$, where the point is $(\mathrm{x}, \mathrm{y}, \mathrm{z})$. In other words, the lines are also triples (l, m, n), with l, m, n residues $\bmod p$, not all zero and $(l, m, n),(2 l$, $2 m, 2 n), \ldots,((p-1) l,(p-1) m,(p-1) n)$ representing the same line.

One way of writing the points is p^{2} of the form $(\mathrm{a}, \mathrm{b}, 1)$, p of the form $(\mathrm{a}, 1,0)$ and lastly $(1,0,0)$. Similarly for the lines. We must show that (1) each point is on $p+1$ lines (so each column has $\mathrm{p}+1$ black squares), (2) each line has $\mathrm{p}+1$ points (so each row has $\mathrm{p}+1$ black squares, (3) two lines meet in just one point (so no rectangles).
(1): Consider the point $\mathrm{P}(\mathrm{a}, \mathrm{b}, 1)$ with a non-zero. Then for any m, there is a unique l such that $l \mathrm{a}+m \mathrm{~b}+1.1=0$, so there are p lines of the form $(l, m, 1)$ which contain P . Similarly, there is a unique l such that $l \mathrm{a}+1 \mathrm{~b}+0.1=0$, so one line of the form $(l, 1,0)$ contains P. The line $(1,0,0)$ does not contain P. So P lies on just $p+1$ lines. Similarly for $(\mathrm{a}, \mathrm{b}, 1)$ with b non-zero. The point $(0,0,1)$ does not lie on any lines $(l, m, 1)$, but lies on $(l, 1,0)$ and $(1,0,0)$, so again it lies on $\mathrm{p}+1$ lines.

Consider the point $\mathrm{Q}(\mathrm{a}, 1,0)$ with a non-zero. For any m , there is a unique l such that Q lies on $(l, m, 0)$. There is also a unique l such that Q lies on $(l, 1,0)$. Q does not lie on $(1$, $0,0)$, so it lies on just $\mathrm{p}+1$ lines. Similarly, the point $(0,1,0)$ lies on the p lines $(l, 0,0)$ and on $(1,0,0)$, but no others

Finally, the point $(1,0,0)$ lies on the p lines $(0, m, 1)$, the line $(0,1,0)$ and no others. Thus in all cases a point lies on just $\mathrm{p}+1$ lines. The proof of (2) is identical.
(3). Suppose the lines are (l, m, n) and (L, M, N). If l and L are non-zero, then we can take the lines as $\left(1, m^{\prime}, n^{\prime}\right)$ and $\left(1, M^{\prime}, N^{\prime}\right)$. So any point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on both satisfies $\mathrm{x}+m^{\prime} \mathrm{y}$ $+n^{\prime} \mathrm{z}=0\left(^{*}\right)$ and $\mathrm{x}+M^{\prime} \mathrm{y}+N^{\prime} \mathrm{z}=0$. Subtracting, $\left(m^{\prime}-M^{\prime}\right) \mathrm{y}+\left(n^{\prime}-N^{\prime}\right) \mathrm{z}=0$. The coefficients cannot both be zero, since the lines are distinct. So the ratio $\mathrm{y}: \mathrm{z}$ is fixed. Then $\left({ }^{*}\right)$ gives the ratio $\mathrm{x}: \mathrm{y}$. So the point is uniquely determined. If just one of l, L is non-zero, then we can take the lines as $\left(0, m^{\prime}, n^{\prime}\right),\left(1, M^{\prime}, N^{\prime}\right)$. We cannot have both m and n^{\prime} zero, so the ratio $\mathrm{y}: \mathrm{z}$ is determined, then the other line determines the ratio $\mathrm{x}: \mathrm{y}$. So again the point is uniquely determined. Finally, suppose l and L are both zero. Then since the lines are distinct y and z must both be zero. So the unique point on both lines is $(1,0,0)$.

1996/4. Induction on n. It is obvious for $n=3$, because the only pairs are $(1,3)$ and (2, 3), and $1 / 3+1 / 6=1 / 2$. Now suppose it is true for n. As we move to $n+1$, we introduce the new pairs $(a, n+1)$ with a relatively prime to $n+1$ and we lose the pairs ($a, n+1-a$) with a relatively prime to $n+1-a$ and hence to $n+1$. So for each a relatively prime to $n+1$ and $<(\mathrm{n}+1) / 2$ we gain $(\mathrm{a}, \mathrm{n}+1)$ and $(\mathrm{n}+1-\mathrm{a}, \mathrm{n}+1)$ and lose $(\mathrm{a}, \mathrm{n}+1-\mathrm{a})$. But $1 / \mathrm{a}(\mathrm{n}+1)+1 /($ $(n+1-a)(n+1))=(n+1-a+a) /(a(n+1-a)(n+1))=1 /(a(n+1-a))$.

1996/5. We use induction. It is obvious for $\mathrm{n}=1$ and 2 - see diagram above. Note that A, B, C start and end at vertices of the large triangle.

Now assume that for n we can find a solution with $\mathrm{A}, \mathrm{B}, \mathrm{C}$ starting and ending at the vertices of the large triangle. Take $n+1$. We start with the paths shown which bring A, B, C to $A^{\prime}, B^{\prime}, C^{\prime}$ at the vertices of a triangle side $\mathrm{n}-1$. Now by induction we can continue the paths so that we bring A, B, C, back to the vertices of that triangle after tracing out all its edges. Finally, note that for each of the points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ there is a path length 2 over untraced segments to a vertex of the large triangle. So we get a solution for $\mathrm{n}+1$ and hence for all n .

1996/6. Suppose we have four points A, B, C, D with associated numbers a, b, c, d. Then $\mathrm{AB}^{2}=\mathrm{a}+\mathrm{b}, \mathrm{AC}^{2}=\mathrm{a}+\mathrm{c}$, so $\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{b}-\mathrm{c}$. Similarly, $\mathrm{DB}^{2}-\mathrm{DC}^{2}=\mathrm{b}-\mathrm{c}$, so $\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{DB}^{2}-\mathrm{DC}^{2}$. Let X be the foot of the perpendicular from A to BC , and Y the foot of the perpendicular from D to $B C$. Then $A B^{2}-A C^{2}=\left(A X^{2}+X B^{2}\right)-\left(A X^{2}+X C^{2}\right)$ $=X B^{2}-X C^{2}$. Similarly for D, so $X B^{2}-X C^{2}=Y B^{2}-Y C^{2}$. Hence $X=Y$, so $A D$ is perpendicular to $B C$. Similarly, $B D$ is perpendicular to $A C$, and $C D$ is perpendicular to AB . Hence D is the (unique) orthocenter of ABC . So $\mathrm{n}<=4$.

Suppose $\mathrm{n}=4$, so we have four points A, B, C, D with associated numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$. We have $A B^{2}+A C^{2}-B C^{2}=(a+b)+(a+c)-(b+c)=2 a$. But by the cosine formula it is also $2 \mathrm{AB} A C \cos \mathrm{BAC}$. Hence $\mathrm{a}=\mathrm{AB} A C \cos \mathrm{BAC}$. Similarly for A, B, D etc. Hence $\mathrm{ab} / \mathrm{cd}=(\mathrm{AB} \mathrm{AC} \cos \mathrm{BAC})(\mathrm{BA} \mathrm{BD} \cos \mathrm{ABD}) /((\mathrm{CA} \cdot \mathrm{CD} \cos \mathrm{ACD})(\mathrm{DB} D C \cos \mathrm{BDC}))$ $=\left(\mathrm{AB}^{2} / \mathrm{CD}^{2}\right)(\cos \mathrm{BAC} / \cos \mathrm{BDC})(\cos \mathrm{ABD} / \cos \mathrm{ACD})$.

Take ABC to be acute with D inside. Then angle $\mathrm{ABD}=$ angle $\mathrm{ACD}\left(=90^{\circ}\right.$ - angle BAC), and angle $\mathrm{BDC}=90^{\circ}+$ angle $\mathrm{ACD}=180^{\circ}$ - angle BAC . So $\cos \mathrm{BAC} / \cos \mathrm{BDC}=$ -1 . Thus $a b / c d=-A B^{2} / C D^{2}=-(a+b) /(c+d)$. Hence $a b(c+d)+c d(a+b)=0$, so $1 / a+$ $1 / b+1 / c+1 / d=0$.

1997/1. Suppose k is not an integer. Take an integer n such that $\mathrm{nk}>1$, but nk is not an integer. Now take a positive integer c such that $1 /(\mathrm{c}+1)<=\mathrm{nk}-[\mathrm{nk}]<1 / \mathrm{c}$. Then $1<=$ $(\mathrm{c}+1) \mathrm{nk}-(\mathrm{c}+1)[\mathrm{nk}]<1+1 / \mathrm{c}$. Hence $[(\mathrm{c}+1) \mathrm{nk}]=(\mathrm{c}+1)[\mathrm{nk}]+1$. Put $\mathrm{m}=(\mathrm{c}+1) \mathrm{n}$. Then m is a multiple of n. But if [mk] is a multiple of [nk], then [mk] - (c+1) [nk] $=1$ is a multiple of [nk], which is impossible since $n k>1$. So we have a contradiction. So k must be an integer.

1997/2. D and P are the reflections of Q and E respectively in the line CI. Hence $P Q$ and DE meet at a point on CI. So U lies on CI. So $\angle \mathrm{PIU}=1 / 2 \angle \mathrm{PIE}=\angle \mathrm{PDE}$ (I is center of circle through $\mathrm{D}, \mathrm{P}, \mathrm{E})=\angle \mathrm{PDU}$ (same angle). Hence PDIU is cyclic. In other words, I lies on the circumcircle of DUP. Similarly, it lies on the circumcircles of ESQ and FTR.

But the same argument shows that $\angle \mathrm{DPT}=\angle \mathrm{DIT}$, so DPIT is cyclic. So T lies on the circle through D, P and I and hence on the circumcircle of DUP. Similarly, for the other circles. So the circumcircles of CUP and FTR meet at T and I. Similarly, the circumcircles of FTR and ESQ meet at S and I, and the circumcircles of ESQ and DUP meet at U and I. So the three circumcircles have just one point in common, namely I.

1997/3. Consider the 4 points shown in the diagram. In each case the segment joining them is the diagonal of an $\mathrm{m} \times 1$ parallelogram or rectangle, so it cannot contain any other lattice points. The next points along each line are obviously outside set D_{n}. That proves the first part.

The second part is the standard parity argument. Color (x, y) with color 1 if x and y are both even, 2 if x is even and y is odd, 3 if x is odd and y is even, and 4 if x and y are
both odd. Then if two points are the same color, that means the first coordinates are the same parity and their second coordinates are the same parity. Hence the midpoint of the segment joining them is also a lattice point and they are not the only two points of D_{n} on the line.

1997/4. We prove by induction that $o(n)=2^{2 n-1}-2^{n-1}$. For $n=1$, this reads $o(1)=2^{1}-2^{0}$ $=1$, which is obviously true - the only such 2 -tuple is $(1,1)$. Suppose it is true for n.

If $\left(a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}\right)$ gives an odd sum, then we can take $\left(a_{n+1}, b_{n+1}\right)$ to be any of $(0,0),(0,1),(1,0)$ and still get an odd sum for $\left(a_{1}, a_{2}, \ldots, a_{n+1}, b_{1}, b_{2}, \ldots, b_{n+1}\right)$. On the other hand if $\left(a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}\right)$ is even, then we must have $a_{n+1}=b_{n+1}=1$ to get an odd sum. Thus $o(n+1)=3 o(n)+e(n)$. But $o(n)=2_{2 n-1}-2_{n-1}$ and $e(n)=(o(n)+$ to get an odd sum. Thus $o(n+1)=3 o(n)+e(n)$. But $o(n)=2^{2 n-1}-2_{n-1}$ and $e(n)=(o(n)+$
$e(n))-o(n)=2^{2 n}-2^{2 n-1}+2^{n-1}=2^{2 n-1}+2^{n-1} . S o o(n+1)=4.2^{2 n-1}-2 \cdot 2^{n-1}=2^{2(n+1)-1}-2^{(n+1)-}$ ${ }^{1}$, which establishes the result for $\mathrm{n}+1$ and hence for all n .

Hence $\mathrm{e}(\mathrm{n})=2^{2 \mathrm{n}}-\mathrm{o}(\mathrm{n})=2^{2 \mathrm{n}-1}+2^{\mathrm{n}-1}$ and $\mathrm{o}(\mathrm{n}) / \mathrm{e}(\mathrm{n})=\left(2^{\mathrm{n}}-1\right) /\left(2^{\mathrm{n}}+1\right)$.
1997/5. We show first that O is the circumcenter of $\mathrm{ABC} . \angle \mathrm{ABF}=90^{\circ}-\mathrm{A}$. The line BC is the reflection in BD of the line BA and the line BF^{\prime} is the refection of BF , so angle $\mathrm{CBF}=90^{\circ}-\mathrm{A}$.

But if O^{\prime} is the circumcenter, then $\angle \mathrm{BO}^{\prime} \mathrm{C}=2 \angle \mathrm{BAC}=2 \mathrm{~A}$, so $\angle \mathrm{O}^{\prime} \mathrm{BC}=90^{\circ}-\mathrm{A}$.
Hence O^{\prime} lies on BF^{\prime}. Similarly, it lies on AE^{\prime} (the reflection of AE in the angle bisector of A$)$. Hence $\mathrm{O}=\mathrm{O}^{\prime}$.

$\angle \mathrm{MBC}=\angle \mathrm{MAC}=90^{\circ}-\mathrm{C}($ since AH is an altitude $)=\angle \mathrm{FBC}($ since BF is an altitude $)=$ $\angle \mathrm{HBC}$ (same angle). So triangles HBE and MBE are congruent and $\mathrm{HE}=\mathrm{EM}$. [Note: this should be a familiar result.].

AN is a diameter, so angle $\mathrm{AMN}=90^{\circ}=$ angle AEC , so BC and MN are parallel. Hence P is the midpoint of HN and of BC . So OP is perpendicular to BC . So AH and OS are parallel.

Since R lies on BC, triangles HER and MER are congruent, so $\angle \mathrm{EHR}=\angle \mathrm{EMR}=$ $\angle A M O$ (same angle) $=\angle$ MAO. Hence HS and AO are parallel. So AHSO is a parallelogram.

1997/6. Let the points be P_{i} for $\mathrm{i}=1,2, \ldots, 1997$. Take P_{1} to be the center of the given unit circle. Let x_{i} be the distance from P_{i} to the closest of the other 1996 points. Let C_{i} be the circle center P_{i} radius $x_{i} / 2$. Then C_{i} and C_{j} cannot overlap by more than one point because x_{i} and $x_{j} \leq P_{i} P_{j}$. Also $x_{i} \leq 1$, since $P_{1} P_{i} \leq 1$. Thus C_{i} is entirely contained in the circle center P_{1} radius $3 / 2$. Since the circles C_{i} do not overlap, their total area cannot exceed the area of the circle radius $3 / 2$. Hence $\left(x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{1997}{ }^{2}\right) / 4 \leq 9 / 4$.

1998/1. Answer: the first player has a winning strategy.
Assume there are n points. The first to play so that $n-2$ points each have at least one segment loses, because the other player simply joins the last two points and the game ends. But there are $N=(n-3)(n-4) / 2$ possible plays amongst the first $n-3$ points to get a segment. For $\mathrm{n}=1$ or $2 \bmod 4, \mathrm{~N}$ is odd and for $\mathrm{n}=0$ or 3 it is even. So the first player wins for $\mathrm{n}=1$ or $2 \bmod 4$ (and in particular for $\mathrm{n}=98$) and the second player for $\mathrm{n}=0$ or $3 \bmod 4$.

1998/2. $\angle \mathrm{AQM}=\angle \mathrm{EQD}($ opposite angle $)=\angle \mathrm{EDC}(\mathrm{CD}$ tangent to circle EQD$)=$ $\left(180^{\circ}-\angle \mathrm{C}\right) / 2=\angle \mathrm{A} / 2+\angle \mathrm{B} / 2\left(^{*}\right)$.
$\mathrm{MF}^{2}=\mathrm{MQ} . \mathrm{ME}(\mathrm{MF}$ tangent to circle FQE$)$. So $\mathrm{AM}=\mathrm{AF}$ is equivalent to $\mathrm{AM}^{2}=$ $\mathrm{MQ} . \mathrm{ME}$ or $\mathrm{AM} / \mathrm{MQ}=\mathrm{ME} / \mathrm{AM}$. But since triangles AMQ and EMA have a common angle $\mathrm{M}, \mathrm{AM} / \mathrm{MQ}=\mathrm{ME} / \mathrm{AM}$ if and only if they are similar, and hence if and only if $\angle \mathrm{AQM}=\angle \mathrm{A}$. Using $\left(^{*}\right) \mathrm{AM}=\mathrm{AF}$ if and only if $\angle \mathrm{A}=\angle \mathrm{B}$.

1998/3. Answer: $\mathrm{n}=835$
Consider the set $S=\{166,167, \ldots, 999\}$. The smallest possible value for $\mathrm{a}+2 \mathrm{~b}+3 \mathrm{c}$, for distinct $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in S is $168+2.167+3.166=1000$. So we cannot find distinct $\mathrm{a}, \mathrm{b}, \mathrm{c}$, in S with $\mathrm{a}+2 \mathrm{~b}+3 \mathrm{c}=\mathrm{d}$. So the smallest $\mathrm{n}>834$

Now suppose S is any subset of 835 elements which satisfies the condition. Take it elements to be $\mathrm{m}=\mathrm{a}_{1}<\mathrm{a}_{2}<\ldots<\mathrm{a}_{835}=\mathrm{M}$. Obviously $\mathrm{M} \geq \mathrm{m}+834 \geq 835$, so $-3 \mathrm{~m} \geq$ $3.834-3 \mathrm{M}$ and hence $\mathrm{M}-3 \mathrm{~m} \geq 2502-2 \mathrm{M} \geq 2502-2.999=504$. Put $\mathrm{k}=\mathrm{M}-3 \mathrm{~m}$.

There are at least 167 disjoint pairs (a, b) of numbers taken from $\{1,2, \ldots, 999\}$ with a $+2 b=k$, namely
(k-2,1)
(k-4, 2)
(k-6, 3)
$(k-334,167)-$ note that in the extreme case $k=504$ this is $(170,167)$
At least one number from each pair must either (1) be M or m or (2) not belong to $\mathrm{S}-$ or otherwise we would have $a+2 b+3 m=M$ for distinct elements a, b, m and M in S None of the numbers can be M and at most one of them can be m , so we have at least 166 numbers which are not in S. That means S contains at most $999-166=833$ numbers. Contradiction. So S cannot have 835 elements. Nor can it have more than 835 elements (or we just take a subset of 835 elements, which must also satisfy the condition, and get a contradiction).

1998/4. Answer: ${ }^{2}$ ²

Obviously there cannot be more than n^{2} people. For if there were, then at least one country would have more than n representatives. But there are only n different countries to choose their right-hand neighbours from. Contradiction.

Represent someone from country i by i. Then for $\mathrm{n}=2$, the arrangement 1122 works. [It wraps round, so that the second 2 is adjacent to the first 1.] Suppose we have an arrangement for n. Then each of $11,22, \ldots, n n$ must occur just once in the arrangement. Replace 11 by $1(n+1) 11,22$ by $2(n+1) 22, \ldots$, and $(n-1)(n-1)$ by $(n-1)(n+1)(n-1)(n-1)$. Finally replace $n n$ by $n(n+1)(n+1) n n$. It is easy to check that we now have an arrangement for $\mathrm{n}+1$. We have added one additional representative for each of the countries 1 to n and $n+1$ representatives for country $n+1$, so we have indeed got $(\mathrm{n}+1)^{2}$ people in all. We have also given a representative of each country 1 to n a neighbour from country $n+1$ on his right and we have given the $(\mathrm{n}+1)$ representatives from country $\mathrm{n}+1$ neighbours (on their right) from each of the other countries. Otherwise we have left the seating unchanged.

1998/5. Answer: $n=4$. Draw a circle radius r_{i} at P_{i}. Then each pair of circles must touch. But that is possible if and only if $n \leq 4$. (cf. next figure)

1998/6. Put $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-1998 \mathrm{x}-1$. Then $\mathrm{p}(1998)=-1, \mathrm{p}(1999)=1998$, so $1998<\mathrm{k}<$ 1999. Also k is irrational (using the formula for the root of a quadratic). We have $\mathrm{x}_{\mathrm{n}}=$ $\left[k x_{n-1}\right]$, so $x_{n}<\mathrm{kx}_{\mathrm{n}-1}$ and $>\mathrm{kx}_{\mathrm{n}-1}-1$. Hence $\mathrm{x}_{\mathrm{n}} / \mathrm{k}<\mathrm{x}_{\mathrm{n}-1}<\mathrm{x}_{\mathrm{n}} / \mathrm{k}+1 / \mathrm{k}$, so $\left[\mathrm{x}_{\mathrm{n}} / \mathrm{k}\right]=\mathrm{x}_{\mathrm{n}-1}-1$.
$\mathrm{k}=(1998 \mathrm{k}+1) / \mathrm{k}=1998+1 / \mathrm{k}$. Hence $k \mathrm{x}_{\mathrm{n}}=1998 \mathrm{x}_{\mathrm{n}}+\mathrm{x} / \mathrm{k}$. Hence $\mathrm{x}_{\mathrm{n}+1}=\left[\mathrm{kx}_{\mathrm{n}}\right]=1998 \mathrm{x}_{\mathrm{n}}$ $+\left[x_{n} / k\right]=1998 x_{n}+x_{n-1}-1$. Hence $x_{n+1}=x_{n-1}-1 \bmod 1998$. So $x_{1998}=1-999=1000$ $\bmod 1998$.

1999/1. $\mathrm{n}<1000$, so the sum of the digits is at most 27 , so n^{2} is a cube not exceeding 27^{3}. So we are looking for m^{3} which is also a square. That implies m is a square. So the only possibilities are $\mathrm{m}=1,4,9,16,25$. Giving $\mathrm{n}=1,8,27,64,125$. The corresponding cubes of the digit sums are $1,512,729,1000,512$, whereas the corresponding squares are $1,64,729,4096,15625$. Thus the only solutions are $\mathrm{n}=1$, 27.

1999/2. Let $\mathrm{C}, \mathrm{C}^{\prime}$ have center $\mathrm{O}, \mathrm{O}^{\prime}$ respectively and radius r , r^{\prime} respectively. Let a circle center P bisect C. Suppose it meets C at A and B. Then $A B$ is perpendicular to OP and is a diameter of C . Hence $\mathrm{PA}^{2}=\mathrm{OP}^{2}+\mathrm{r}^{2}$. Conversely, the circle center P , radius $\sqrt{ }\left(\mathrm{OP}^{2}+\mathrm{r}^{2}\right)$ bisects C. So P will bisect C and C^{\prime} if and only if $\mathrm{OP}^{2}+\mathrm{r}^{2}=\mathrm{OP}^{\mathbf{1}^{2}}+\mathrm{r}^{\mathbf{1}^{2}}$.

It is well-known that the locus of points P^{\prime} with equal tangents to C and C^{\prime} is the radical axis. Call the radical axis R . For a point P^{\prime} on the radical axis we have $\mathrm{P}^{\prime} \mathrm{O}^{2}-\mathrm{r}^{2}=\mathrm{P}^{\prime} \mathrm{O}^{\prime 2}-$ $\mathrm{r}^{\prime 2}$. If we reflect P^{\prime} in the perpendicular bisector of OO^{\prime} to get P , then $\mathrm{PO}=\mathrm{P}^{\prime} \mathrm{O}^{\prime}$ and PO^{\prime} $=\mathrm{P}^{\prime} \mathrm{O}$, so $\mathrm{PO}^{\prime 2}-\mathrm{r}^{2}=\mathrm{PO}^{2-\mathrm{r}^{2}}$ and hence $\mathrm{PO}^{2}+\mathrm{r}^{2}$. Call the reflection of the R in the perpendicular bisector of OO' the line R'. We have established that points on R' form part of the locus. Conversely, if P^{\prime} is such that there is a circle center P^{\prime} bisecting both circles, then $\mathrm{OP}^{\mathbf{2}^{2}}+\mathrm{r}^{2}=\mathrm{O}^{\prime} \mathrm{P}^{\mathbf{2}^{2}}+\mathrm{r}^{\prime^{2}}$, so if P is the reflection of P^{\prime} then $\mathrm{OP}^{2}-\mathrm{r}^{2}=\mathrm{OP}^{\prime^{2}}-\mathrm{r}^{\prime 2}$ and hence P lies on the radical axis R. Hence P^{\prime} must lie on R'.

Radical axis

We have $\mathrm{PT}^{2}=\mathrm{PO}^{2}-\mathrm{r}^{2}=\mathrm{PX}^{2}+\mathrm{OX}^{2}-\mathrm{r}^{2}$, and similarly $\mathrm{PT}^{\prime 2}=\mathrm{PX}^{2}+\mathrm{O}^{\prime} \mathrm{X}^{2}-\mathrm{r}^{\prime 2}$. So PT $=\mathrm{PT}^{\prime}$ if and only if $\mathrm{OX}^{2}-\mathrm{r}^{2}=\mathrm{O}^{\prime} \mathrm{X}^{2}-\mathrm{r}^{\prime 2}$. There is evidently a unique point X for which that is true, so the locus of such P is the line through X perpendicular to OO^{\prime}

If the circles intersect, then the point X evidently lies on the line joining the two common points, because $O X^{2}-r^{2}=-X Y^{2}=O^{\prime} X^{2}-r^{\prime 2}$. In any case the midpoint of each common tangent evidently lies on the line, so that provides a way of constructing it.

1999/3. Answer: $\mathrm{n}>\mathrm{k}+1$.
There are $\mathrm{n}-1$ circles with diameter $\mathrm{P}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}+1}$. Obviously, each pair has a common tangent. If $\mathrm{n}-1>\mathrm{k}$, then two of them must have the same color.

If $\mathrm{n}-1 \leq \mathrm{k}$, then color all circles with diameter $\mathrm{P}_{\mathrm{i}} \mathrm{P}_{\mathrm{j}}$ and $\mathrm{i}<\mathrm{j}$ with color i . Then if two circles have the same color, then both have a tangent at one of the points. Hence one lies inside the other and they do not have a common external tangent.

1999/4. Such a number cannot be divisible by 2 (or its last digit would be even) or by 5 (or its last digit would be 0 or 5). So if the result is false then the number must be of the form $3^{\mathrm{m}} 7^{\mathrm{n}}$ for non-negative integers m, n. But we claim that a number of this form must have even 10 s digit.

It is easy to prove the claim by induction. It is true for 3 and 7 (the digit is 0 in both cases). But if we multiply such a number by 3 or 7 , then the new 10 s digit has the same parity as the carry from the units digit. But multiplying $1,3,7,9$ by 3 gives a carry of 0 , $0,2,6$ respectively, which is always even, and multiplying by 7 gives a carry of $0,2,4$, 6 , which is also always even. So the new number also has an even 10 s digit.

1999/5. Let OA and PQ meet at $\mathrm{T} . \angle \mathrm{AEH}=\angle \mathrm{AFH}=90^{\circ}$, so AEHF is cyclic, so $\angle \mathrm{AFT}=\angle \mathrm{AFE}$ (same angle) $=\angle \mathrm{AHE}=90^{\circ}-\angle \mathrm{HAE}=90^{\circ}-\angle \mathrm{DAC}$ (same angle) $=$ $\angle \mathrm{C}$. But $\angle \mathrm{TAF}=\angle \mathrm{OAF}$ (same angle) $=90^{\circ}-(1 / 2) \angle \mathrm{AOB}=90^{\circ}-\angle \mathrm{C}$. Hence $\angle \mathrm{AFT}=$ 90°, which establishes that OA and PQ are perpendicular.

Let the circumradius be R and let $A A^{\prime}$ be a diameter. We have $A F=A C \cos A=2 R \sin$ $B \cos A$. Hence $A T=A F \cos O A B=A F \sin C=2 R \cos A \sin B \sin C$. Now $P^{2}=$ $\mathrm{PT} \cdot \mathrm{TQ}=\mathrm{AT} \cdot \mathrm{A}^{\prime} \mathrm{T}=\mathrm{AT}(2 \mathrm{R}-\mathrm{AT})$. Hence $\mathrm{AP}^{2}=2 R \cdot A T=4 \mathrm{R}^{2} \cos \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}$.

We have $A D=A C \sin C=2 R \sin B \sin C$, and $O M=O C \cos C O M=R \cos A$. Hence 2 $\mathrm{AD} \cdot \mathrm{OM}=\mathrm{AP}^{2}$.

1999/6. Answer: any C such that $\angle \mathrm{ACB}=180^{\circ} \mathrm{r} / \mathrm{s}$, with r and s relatively prime integers and s not a power of 2 .

Let $\angle A C_{n} B=x_{n}$, where the angle is measured clockwise, so that x_{n} is positive on one side of $A B$ and negative on the other side. Then x_{n} uniquely identifies C_{n} on the perpendicular bisector.

We have $x_{n+1}=2 x_{n}$. To make this work in all cases we have to take it mod 180° (so that
 then $x_{m+1}=x_{n+1}$, for some $n>m$, so $\left(2^{n}-2^{m}\right) x_{1}=0 \bmod 180$. Hence $x_{1}=180 \mathrm{r} / \mathrm{s}$ for some relatively prime integers r, s. Also s cannot be a power of 2 for then we would have $\mathrm{x}_{\mathrm{k}}=180 \mathrm{r}$ for some k , in which case the sequence would terminate rather than be periodic.

Conversely, suppose $\mathrm{x}_{1}=180 \mathrm{r} / \mathrm{s}$, with r and s relatively prime and s not a power of 2 . Then $\mathrm{x}_{\mathrm{n}+1}=1802^{\mathrm{n}} \mathrm{r} / \mathrm{s}$ cannot be $0 \bmod 180$, so the sequence does not terminate. Put $\mathrm{s}=$ $2^{\mathrm{b}} \mathrm{c}$, with c odd. Let $\mathrm{d}=\varphi(\mathrm{c})$, where $\varphi(\mathrm{m})$ is Euler's phi function, so that $2^{\mathrm{d}}=1 \bmod \mathrm{c}$. Then $\mathrm{x}_{\mathrm{b}+1}=180 \mathrm{r} / \mathrm{c} \bmod 180$ and $2^{\mathrm{b}+\mathrm{d}}=2^{\mathrm{b}} \bmod \mathrm{c}$, so $\mathrm{x}_{\mathrm{b}+\mathrm{d}+1}=180 \mathrm{r} / \mathrm{c} \bmod 180$. Hence the sequence is periodic.

2000/1. Labeling the diagonal/side between i and j as $i+j$ (reduced if necessary mod n) almost works. The labels for all the lines at a given vertex will be different. But the line between i and n will have label i, the same as one endpoint. However, we are not using the label 2 i for the lines from vertex i . So for the line between i and n we use 2 i instead of $i+n$. The only points that need checking are (1) whether a line from i to n has a label different from n , and (2) whether all the lines at n have different labels. Both points are ok because n is odd.

2000/2. A neat coordinate solution by Massaki Yamamoto (a competitor) is as follows. Take $A B$ as the x-axis and the perpendicular line through M as the y-axis. Choose the unit of length so that M has coordinates $(0,1)$. Let A be $(-m, 0)$ and B be $(n, 0)$. Then
considering the right-angled triangle $O^{\prime} M K$, where K is $(n, 1)$ we find that O^{\prime} is (n, $\left.\left(\mathrm{n}^{2}+1\right) / 2\right)$. Similarly, O is $\left(-\mathrm{m},\left(\mathrm{m}^{2}+1\right) / 2\right)$).

The gradient of the lie AM is $1 / \mathrm{m}$, so the gradient of the line BD is -m and hence its equation is $m x+y=m n$. The gradient of the line OO^{\prime} is $(\mathrm{n}-\mathrm{m}) / 2$, so its equation is $2 \mathrm{y}-$ $\mathrm{x}(\mathrm{n}-\mathrm{m})=\mathrm{mn}+1$. These intersect at $\left((\mathrm{mn}-1) /(\mathrm{m}+\mathrm{n}),\left(\mathrm{mn}^{2}+\mathrm{m}\right) /(\mathrm{m}+\mathrm{n})\right)$. B^{\prime} is $\left(\mathrm{n}, \mathrm{n}^{2}+1\right)$. It is now easy to check that the lines MB' and MD both have gradient n , so M, D, B' are collinear.

2000/3. Answer: $(\mathrm{m}, \mathrm{a}, \mathrm{b})=(2,2,3)$.
Solution: Taking equation mod $m+1$ we get $(-1)^{b}=-1$, so b is odd. Hence we can divide the rhs by $m+1$ to get $m^{b-1}-m^{b-2}+\ldots-m+1$. This has an odd number of terms. If m is odd, then each term is odd and so the total is odd, but $(\mathrm{m}+1)^{\mathrm{a}-1}$ is even (note that a >1). Contradicton, so m is even.

We have $\mathrm{m}^{\mathrm{b}}=(\mathrm{m}+1)^{\mathrm{a}}-1$. Expanding the rhs by the binomial theorem, and using $\mathrm{b}>1$, we see that m must divide a . So a is even also. Put $\mathrm{a}=2 \mathrm{~A}, \mathrm{~m}=2 \mathrm{M}$. We can factorise $(m+1)^{\mathrm{a}}-1$ as $\left((m+1)^{\mathrm{A}}+1\right)\left((m+1)^{\mathrm{A}}-1\right)$. The two factors have difference 2 , so their gcd divides 2 , but both factors are even, so their gcd is exactly 2 .

If $\mathrm{M}=1$ or a power of 2 , then the smaller factor $3^{\mathrm{A}}-1$ must be 2 , so $\mathrm{A}=1$ and we have $3^{A}+1=4$, so $(2 M)^{b}=8$. Hence $M=1$ and $b=3$ and we have the solution $(m, a, b)=$ $(2,2,3)$.

If M is not a power of 2 , then $M^{b}>2^{b}$, so we must have the larger factor $2 \cdot M^{b}$ and the smaller factor $2^{\mathrm{b}-1}$. But the larger factor is now $>2^{\mathrm{b}+1}$, so the difference between the factors is at least $3 \cdot 2^{\mathrm{b}-1}>2$. Contradiction.

2000/4. Answer: the positive integers.
If a is negative, then the terms in the GP are alternately positive and negative, whereas either all terms in the AP from a certain point on are positive or all terms from a certain point on are negative. So a cannot be negative. If a is zero, then all terms in the GP except the first are zero, but at most one term of the AP is zero, so a cannot be zero. Thus a must be positive, so the AP must have infinitely many positive terms and hence $x \geq 1$.

Let $\mathrm{d}=\mathrm{x}-1$, so all terms of the AP have the form $1+\mathrm{nd}$ for some positive integer n . Suppose $\mathrm{a}=1+\mathrm{md}, \mathrm{a}^{2}=1+\mathrm{nd}$, then $(1+\mathrm{md})^{2}=1+\mathrm{nd}$, so $\mathrm{d}=(\mathrm{n}-2 \mathrm{~m}) / \mathrm{m}^{2}$, which is rational. Hence a is rational. Suppose $a=b / c$, where b and c are relatively prime positive integers and $c>1$. Then the denominator of the nth term of the GP is c^{n}, which becomes arbitrarily large as n increases. But if $d=h / k$, then all terms of the AP have denominator at most k . So we cannot have $\mathrm{c}>1$. So a must be a positive integer.

On the other hand, it is easy to see that any positive integer works. Take $x=2$, then the AP includes all positive integers and hence includes any GP with positive integer terms.

2000/5. The first player has a winning strategy. He takes 4 on his first move leaving 7 $\bmod 13(2000=153.13+7+4)$. Now we claim that the first player can always leave: (1) $0 \bmod 13$, (2) $3 \bmod 13$ by taking away 3 , (3) $5 \bmod 13$ by taking away 5 , or (4) 7 $\bmod 13$, and that the second player can never leave $0 \bmod 13$.

Let us look at each of these in turn. If the first player leaves $0 \bmod 13$, then the second player can take 3 and leave 10. In that case the first player takes 5 (a type (3) move). If the second player takes $1,2,4$ or 5 , leaving $12,11,9$ or $8 \bmod 13$, then the first player takes 5, 4, 2, 1 (respectively) and leaves 7 mod 13 (a type (4) move).

If the first player leaves $3 \bmod 13$ by taking away 3 , then the second player cannot leave $0 \bmod 13$, because he cannot take 3 stones. If he takes 1,2 leaving $2,1 \bmod 13$ respectively, then the first player takes 2,1 leaving $0 \bmod 13$ (a type (1) move). If the second player takes 4,5 leaving $12,11 \bmod 13$, then the first player takes 5,4 leaving 7 mod 13 (a type (4) move).

If the first player leaves $5 \bmod 13$ by taking 5 , then the second player cannot leave 0 mod 13 , because he cannot take 5 stones. If he takes $1,2,3,4$ stones, leaving $4,3,2,1$ $\bmod 13$, then the first player takes $4,3,2,1$ stones leaving $0 \bmod 13($ a type (1) move).

Finally, if the first player leaves $7 \bmod 13$, and the second player takes 1 stone, then the first player takes 3 stones leaving $3 \bmod 13$ (a type (2) move). If the second player takes $2,3,4$, or 5 stones leaving $5,4,3,2$ mod 13 , then the first player takes $5,4,3,2$ stones leaving $0 \bmod 13$ (a type (1) move).

So the second player can never leave $0 \bmod 13$ and hence, in particular, can never take the last stone. But we have shown that the first player can always make a move of one of the four types, so can always move and hence must win (since after less than 2000 moves there will be no stones left).

2000/6. Answer: We can get arbitrarily close to (but not achieve) ($3 \sqrt{ } 3$)/4 (approx 1.3) by:

To prove the first part, consider the diagram below. Take $\mathrm{AB}=\mathrm{AC}=1$ and angle BAC $=2 \theta$. Take $\mathrm{DE}=\mathrm{DF}=1$ and take the points of intersection X and Y such that $\mathrm{AX}=\mathrm{DX}$ $=\mathrm{AY}=\mathrm{DY}=2 / 3$. It is easy to check that the area of the hexagon is $\sin 2 \theta$. So by taking θ in the interval $(0, \pi / 4]$ we can get any area $0<\mathrm{k} \leq 1$.

It is easy to check that there are six possible configurations for the unit diagonals, as shown in the diagram below.

Consider case 1.

The area of the hexagon is area AEDC + area AFE + area BAC. The part of the segment BF that lies inside AEDC is wasted. The rest goes to provide height for the triangles on bases AE and AC . So area $\mathrm{AFE}+$ area BAC can be maximised by taking F close to A and $\angle \mathrm{BAC}$ as close to a right angle as possible, so that the height of the triangle BAC (on the base AC) is as large as possible. We can then get arbitrarily close to the area of:

We obviously make AEB a straight line. Now area $\mathrm{ADE}+$ area $\mathrm{ADC}=$ area $\mathrm{ACE}+$ area CDE. So if we regard every point except D as fixed, then we maximise the area by taking $\angle \mathrm{EAD}=\angle \mathrm{CAD}$, so that D is the maximum distance from CE . Thus a maximal configuration must have $\angle \mathrm{AED}=\angle \mathrm{CAD}$. Similarly, it must have $\angle \mathrm{CAD}=\angle \mathrm{CAB}$, so all three angles must be equal. That disposes of case 1 .

In cases 2 and 6 we find by a similar (but more tedious argument) the same maximum, although in one case we have to use the argument at the end for the final optimisation. In the other cases the maximum is smaller.

3

4
$\overline{5}$

However, all these details would take an already long solution way over length. Does anyone have a better approach?

No. 6 (second case) can be made arbitrarily close to the figure below (with $\mathrm{AB}=\mathrm{AC}=$ $B D=1$). To optimise it, suppose $\angle A C B=\theta$. Area $A B D C=$ area $A B C+$ area $B C D$. If we fix θ, then BC is fixed, so to maximise area BCD we must take $\angle \mathrm{CBD}=90^{\circ}$. But θ cannot be optimal unless also $\angle \mathrm{CAD}=90^{\circ}$. We have $\mathrm{BA}=\mathrm{BD}$ and hence $\angle \mathrm{BAD}=$ $\angle \mathrm{BDA}=45^{\circ}-\theta / 2$. Hence $90^{\circ}=\angle \mathrm{CAD}=\angle \mathrm{BAC}-\angle \mathrm{BAD}=\left(180^{\circ}-2 \theta\right)-\left(45^{\circ}-\theta / 2\right)$. Hence $\theta=30^{\circ}$. So $\angle \mathrm{ACD}=\angle \mathrm{BDC}=60^{\circ}$ and $\angle \mathrm{CAB}=\angle \mathrm{ABD}=120^{\circ}$. It is easy to check that this has area $(3 \sqrt{ } 3) / 4$.

2001/1. $3232=16 \times 202$ and $10000=16 \times 625$. So any number with 3232 as its last 4 digits is divisible by 16 . So consider $\mathrm{N}=22223232$. Its sum of digits is 18 , so it is divisible by 9 . Hence it is divisible by $9.16=144$. But any four digits have at most four 2 s and at most two 3 s , so the product of any four digits divides 144 and hence N . But now we can extend N by inserting an additional 9 m 2 s at the front. Its digit sum is increased by 18 m , so it remains divisible by 144 and it is still divisible by the product of any four digits.

Alternative solution
The number 111111111 with nine 1 s is divisible by 9 . Hence the number with twentyseven 1 s which equals $111111111 \times 1000000001000000001$ is divisible by 27 . So N, the number with twenty-seven 3 s , is divisible by 3^{4}. Now the number with 27 n 3 s is divisible by N and hence by 3^{4}.

2001/2. $\mathrm{AF}=\mathrm{AE}$, so $\angle \mathrm{AFE}=90^{\circ}-\mathrm{A} / 2$. Hence $\angle \mathrm{BFP}=90^{\circ}+\mathrm{A} / 2$. But $\angle \mathrm{FBP}=\mathrm{B} / 2$, so $\angle \mathrm{FPB}=\mathrm{C} / 2$. But BFP and BDP are congruent $(\mathrm{BF}=\mathrm{BD}$, BP common, $\angle \mathrm{FBP}=$ $\angle \mathrm{FDP}$), so $\angle \mathrm{DPB}=\mathrm{C} / 2$ and $\angle \mathrm{DPQ}=\mathrm{C}$. Similarly, $\angle \mathrm{DQP}=\mathrm{B}$. Hence $\angle \mathrm{PDQ}=\mathrm{A}$. So DQP and ABC are similar. So if one is isosceles, so is the other.

2001/3.

2001/4. Answer: $(\mathrm{m}-1) \mathrm{m}$ for $\mathrm{n}=2 \mathrm{~m}$ and m^{2} for $\mathrm{n}=2 \mathrm{~m}+1$
Solution: Let X be one of the elements. What is the largest number of trios that can have X as middle element? Obviously, at most $\max (b, a)$, where b is the number of elements smaller than X and a is the number larger. Thus if $n=2 m$, the no. of trios is at most $0+1+2+\ldots+\mathrm{m}-1+\mathrm{m}-1+\mathrm{m}-2+\ldots+1+0=(\mathrm{m}-1) \mathrm{m}$. If $\mathrm{n}=2 \mathrm{~m}+1$, then the no. is at most $0+1+2+\ldots+\mathrm{m}-1+\mathrm{m}+\mathrm{m}-1+\ldots+1+0=\mathrm{m}^{2}$.

These maxima can be achieved by taking the numbers $1,2,3, \ldots, n$.
2001/5.
2001/6.

2002/1. Answer: 1598.
Let a_{n} be the first number remaining after n iterations, so $a_{0}=1, a_{1}=2, a_{3}=3, a_{4}=5$ etc. We claim that:

$$
a_{n+1}=3 / 2 a_{n} \quad \text { if } a_{n} \text { is even, and }
$$

$3 / 2\left(a_{n}+1\right)-1$
if a_{n} is odd.
We use induction on n. Suppose $a_{n}=2 N$. Consider the number 3 N . There are initially N smaller numbers $=1 \bmod 3$. So after the first iteration, it will lie in 2Nth place. Hence, it will lie in first place after $n+1$ iterations. Similarly, suppose $\mathrm{a}_{\mathrm{n}}=2 \mathrm{~N}+1$. Consider $3 \mathrm{~N}+2$. There are initially $\mathrm{N}+1$ smaller numbers $=1 \bmod 3$. So after the first iteration, it will lie

2002/4. Let H be the foot of the perpendicular from D to $\mathrm{AB} . \angle \mathrm{AHD}=\angle \mathrm{AED}=90^{\circ}$, so AHED is cyclic. Hence $\angle \mathrm{DAE}=\angle \mathrm{DHE}$. But M is the reflection of H is the line BD , so $\angle \mathrm{DME}=\angle \mathrm{DAE}$.

AE is parallel to CD , so $\angle \mathrm{DAE}=\angle \mathrm{DCF} . \angle \mathrm{DFC}=\angle \mathrm{DMC}$, so DMCF is cyclic. Hence $\angle \mathrm{DCF}=\angle \mathrm{DMF}$. Hence $\angle \mathrm{DME}=\angle \mathrm{DMF}$.

2002/5. Note that whilst a_{n} remains positive we have $a_{1}>a_{2}>a_{3}>\ldots>a_{n}$. Hence if a_{m} and a_{m+n} are in this part of the sequence, then $a_{m+1}=a_{m}-1 / a_{m}, a_{m+2}=a_{m+1}-1 / a_{m+1}<$ $a_{m+1}-1 / a_{m}=a_{m}-2 / a_{m}$. By a trivial induction $a_{m+n}<a_{m}-n / a_{m}$.

If we use one step then we need $56^{2}=3136$ terms to get $a_{1+3136}<56-56^{2} / 56=0$, which is not good enough. So we try several steps.

Thus suppose that $a_{n}>0$ for all $n<=2002$. Then we get successively
$\mathrm{a}_{337}<56-336 / 56=50$
$\mathrm{a}_{837}<50-500 / 50=40$
$\mathrm{a}_{1237}<40-400 / 40=30$
$\mathrm{a}_{1537}<30-300 / 30=20$
$\mathrm{a}_{1737}<20-200 / 20=10$
$\mathrm{a}_{1837}<10-100 / 10=0$.
Contradiction. So we must have $\mathrm{a}_{\mathrm{n}}<0$ for some $\mathrm{n}<2002$
Remark: Using Maple, we find that a_{n} is first negative for $\mathrm{n}=1572$.
2002/6. Color the squares with three colors as follows:
$\begin{array}{lllllllll}0 & 1 & 2 & 0 & 1 & 2 & 0 & \ldots & 2\end{array}$

$\begin{array}{llllllllll}2 & 0 & 1 & 2 & 0 & 1 & 2 & \ldots & 1 \\ 0 & 1 & 2 & 0 & 1 & 2 & 0 & & \\ 1\end{array}$
$\begin{array}{llllllll}1 & 2 & 0 & 1 & 2 & 0 & 1 & \ldots\end{array}$
$2012012 \ldots 1$
The middle square is color 2 (moving $999+1$ squares E from the top left increases the color by 1 , then moving $999+1 \mathrm{~S}$ increases it by another 1) and the square immediately NE of it is also 2. So both P and R start on color 2. Note that any move increases the color by 1 mod 3 , except for P's special move which changes the color from 1 to 0 .

Until P has made this move, after each move of P, P's color is always 1 more than R's color (mod 3), so P cannot win (irrespective of the moves made by either player). Immediately after he makes the special move for the first time, P is on color 0 and R is on color 1, so immediately after his move P's color is now 1 less than R's color mod 3. Again P cannot win. But after P has made the special move for the second time, P's color is the same as R's $(\bmod 3)$ immediately after P's move.

Note that it takes P at least 2001 moves to complete his special move for the first time and at least 6002 moves (in total) to complete his special move for the second time. This solves the first part of the question. Suppose R just moves down to the bottom right and then moves in small circles (one move NW, one move S, one move E) waiting for P . It takes P at least $6002+3999$ (moving from top left to the capture square, one square short of the bottom right $)=10001$ to capture him, so R makes at least 10000 moves before being captured.

We claim that P wins if he can get into any of the positions shown below relative to R , with R to move (*):
$x \quad P \quad x \quad x \quad x$
$\mathrm{P} \quad \mathrm{x} x \mathrm{P} \mathrm{x}$
$x \quad x \quad R \quad x \quad x$
$\begin{array}{lllll}x & P & x & P\end{array}$
$\mathrm{x} \mathrm{X} P \mathrm{x}$
If follows that P can also win from the four positions below (${ }^{* *}$):
x x x \quad P \quad x \quad x
x x x x x x x
x x x x x
$P \quad x \quad x \quad R \quad x \quad P$
x x x x x x
$x \quad x \quad x \quad x \quad x \quad x$
$\begin{array}{lllll}x & x & x & x\end{array}$
For in each case at least one of R's possible moves allow P to move immediately into one of the winning positions at ${ }^{*}$). But R can only make the other moves a limited number of times before running into the border. [That is obvious if the other two moves are E and S. If they are NW and E, then every NW move takes R closer to the top border, but his total number of E moves can never exceed his total number of NW moves by more than 2000 because of the right border. Similarly, for NW and S.]

Now let d be the number of rows plus the number of columns that R and P are apart. It is easy to check that the positions in $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ represent the only possibilities for $\mathrm{d}=$ 2 and 3 . We show that P can always get to $\mathrm{d}=2$ or 3 . For P can always copy R's move,
so he can certainly move so that d never increases. But one of R's moves will always allow P to decrease d by 1 or 2 . There are three cases to consider:
Case 1. If P is east of R and R moves E , then P moving NW will decrease d by 1 or 2. That is not possible if P is in the top row, but then moving S will decrease d by 2 unless R is also in the top row. If both are in the top row, then P moves S . Now after R's next move, P moves NW which reduces d by 2 .
Case 2. If P is south of R and R moves S , then a similar argument, shows that P can always decrease d by 1 or 2 in one or two moves.
Case 3. If P is not south or east or R , and R moves NW, then P can always decrease d by 1 or 2 by moving S or E .

But repeated decreases by 1 or 2 must bring d ultimately to 2 or 3 and hence to one of $\left({ }^{*}\right)$ or $\left({ }^{* *}\right)$. So P can always win.

It remains to prove the claim that $\left(^{*}\right)$ are winning positions. The reason is that in each case R has one move blocked off, so must make one of the other two. P then copies R's move, so next turn R has the same move blocked off. Repeated use of the other two moves will bring him ultimately to one of the sides.

We start with the easiest case: in the two following positions. R cannot move to z , so he must move east or south on each move. Hence he will (after at most 4000 moves) reach the bottom right corner. He then loses moving out of it.
$x \quad \mathrm{P} \quad \mathrm{x}$
$\begin{array}{ll}\mathrm{P} & \mathrm{z} \\ \mathrm{x}\end{array}$
x x R
The other cases of $\left({ }^{*}\right)$ are slightly more complicated. Starting from either of the two positions below, we show that R must eventually reach the extreme left column.
w $\mathrm{x} \quad \mathrm{P} \quad \mathrm{x}$
$x \quad R \quad z \quad x$
x y x P
R cannot move to z , so he can only make NW and S moves. But his total number of S moves can never exceed his total number of NW moves by more than 2000 because he cannot move off the bottom of the board, so he must eventually reach the extreme left column. [If he reaches the bottom row at y, then P can always move to z to preserve the configuration. If R reaches the top row by moving to w, then P can always move to z to preserve the configuration.]

Having reached the extreme left column he is forced to move south. Eventually moving to y will take him to the corner. P then moves to z and R is captured on his next move.

The final case to consider is the two positions below. R cannot move to z , so must move E or NW. A similar argument to the previous case shows that he must eventually reach the top row. Having reached it at w, P moves to z . So R is forced to move right along
the top row. When he reaches the corner at y, P moves to z and R is captured when he moves out of the corner.
w $\mathrm{x} x$
$x \quad \mathrm{R} \quad \mathrm{y}$
P z x
$x \quad \mathrm{x} \quad \mathrm{P}$

2003/1. Answer: Yes, no.

Solution: With no loss of generality we can take $A=B=\{1,2, \ldots, N\}-$ if we have a solution for $A=\{a+1, a+2, \ldots, a+N\}$ and $B=\{b+1, b+2, \ldots, b+N\}$, then subtracting a from every element of A and b from every element of b gives a solution for $A=B=\{1$, $2, \ldots, N\}$. Suppose the sum set is $(m+1),(m+2), \ldots,(m+N)$. It has sum $N(2 m+N+1) / 2$ and A and B each have sum $N(N+1) / 2$, so we must have $2 m=N+1$, hence N must be odd. So we cannot do it for $\mathrm{N}=2004$.

Suppose $N=2 M+1$, take the pairs $(1, M+1),(3, M),(5, M-1), \ldots,(2 M+1,1),(2,2 M+1)$, $(4,2 \mathrm{M}), \ldots,(2 \mathrm{M}, \mathrm{M}+2)$.

2003/2. Let the center of the circle be X and the radius r. Let $\angle A X M=\theta, \angle B X N=\varphi$. Note that O is the intersection of XM and the perpendicular to CD at Q , the midpoint of $C P$. We have $\mathrm{XM}=\mathrm{r} \cos \theta$. Let CD and XM meet at Y . Then $\angle \mathrm{PYX}=90^{\circ}-\angle \mathrm{PXY}=$ $90^{\circ}-\angle \mathrm{PXC}-\angle \mathrm{CXM}=\theta+\varphi-\varphi=\theta$. Hence $\mathrm{OX}=\mathrm{PQ} \sec \varphi, \operatorname{so} \mathrm{OX} / \mathrm{XM}=\mathrm{PQ} /(\mathrm{r} \cos \theta$ $\cos \varphi)$. Similarly, $\mathrm{O}^{\prime} \mathrm{X} / \mathrm{ON}=\mathrm{PQ} /(\mathrm{r} \cos \theta \cos \varphi)$, so OO^{\prime} and MN are parallel.

$\mathbf{2 0 0 3} / 3$. For any combination of signs the maximum is obtained by taking all x_{i} as large as possible. Suppose we have a different set of x_{i}. Then for some k we must have $x_{k}<$ $2 x_{k-1}$ and $x_{i}=2 x_{i-1}$ for all $i>k$. Suppose $2 x^{k-1}-x^{k}=h>0$. Then we can increase x_{k} by h, $\mathrm{x}_{\mathrm{k}+1}$ by $2 \mathrm{~h}, \mathrm{x}_{\mathrm{k}+2}$ by $4 \mathrm{~h}, \ldots$. So the sum will be increased by $\mathrm{h}\left(\pm 1 \pm 2 \pm \ldots \pm 2^{\mathrm{m}-1}+2^{\mathrm{m}}\right)$ for some $\mathrm{m} \geq 0$. But $\pm 1 \pm 2 \pm \ldots \pm 2^{\mathrm{m}-1} \geq-\left(1+2+\ldots+2^{\mathrm{m}-1}\right)=-2^{\mathrm{m}}+1$, so the overall sum will be increased by at least 1 . So the set of x_{i} was not maximal.

2003/4. Answer: $\max =41$; no. ways 495
Solution: We must exclude at least one element of each of the 8 sets $\{1,2, \ldots, 6\},\{7, \ldots$ $12\},\{13, \ldots, 18\}, \ldots,\{43, \ldots, 48\}$. So $|\mathrm{A}| \leq 41$. But a value of 41 is certainly possible, for example, exclude $2,8,14, \ldots, 44$.

The largest excluded element must be at least 44 (or we have the 6 consecutive elements $44,45,46,47,48,49$). The smallest excluded element must be at most 6 . If we exclude 2 and 44 , then the difference between them is 7.6 and so the other 6 excluded elements are fixed. But if we exclude 3 and 44 , for example, then there are several possible choices for the other elements.

There are 5 ways of choosing the smallest and largest excluded element to get a difference of $7 \cdot 6$ between them (2 and 44,3 and 45,4 and 46,5 and 47,6 and 48). There are 4 ways to get a difference of $7 \cdot 6-1$ (3 and 44, 4 and 45,5 and 46, 6 and 47). There are 3 ways to get a difference of $7 \cdot 6-2$ (4 and 44, 5 and 45, 6 and 46), 2 ways to get a difference of 7•6-3 (5 and 44, 6 and 45), and 1 way to get a difference of 7•6-4 (6 and 44).

If the difference is $7 \cdot 6-1$, then we can shorten any of the 7 gaps, so there are 7 possibilities. For example, with 3 and 44 , we could shorten the first gap, so excluding 3 , $8,14,20,26,32,38$ and 44 , or the second gap, so excluding $3,9,14,20,26,32,38$ and 44 , and so on.

If the difference is $7 \cdot 6-2$, then we can shorten one gap by two (7 possibilities) or two gaps by one (21 possibilities), total 28 . If the difference is $7 \cdot 6-3$, then we can shorten on gap by three (7), one by two and one by one (42) or three by one (35), total 84 .
Finally, if the difference is $7 \cdot 6-4$, we can shorten one by four (7), one by three and one by 1 (42), two by two (21), one by two and two by one (105), or four by one (35), total 210.

So the total number of possibilities is $5 \cdot 1+4 \cdot 7+3 \cdot 28+2 \cdot 84+1 \cdot 210=495$.
2003/5. We have $D Y<B Y \leq B X+X Y$ (this is almost obvious, but to prove formally use the cosine formula for BAY and DAY and notice that $\angle \mathrm{BAY}>\angle \mathrm{DAY}$). Similarly, $\mathrm{BX}<\mathrm{DX} \leq \mathrm{DY}+\mathrm{YX}$. So it remains to show that $\mathrm{XY}<\mathrm{BX}+\mathrm{DY}$.

Take Q^{\prime} on the extension of BC so that $\mathrm{BQ}^{\prime}=\mathrm{DQ}$, as shown in the diagram. Take Y^{\prime} on AQ^{\prime} so that $\mathrm{AY}^{\prime}=\mathrm{AY}$. Then $X Y^{\prime} \leq B X+B Y^{\prime}=B X+D Y$. Now we claim that $\angle P A Q^{\prime}$ $>\angle \mathrm{PAQ}$, so it follows by the same observation as above that $\mathrm{XY}^{\prime}>\mathrm{XY}$. But the claim is almost obvious. Note that $\mathrm{PQ}^{\prime}=\mathrm{AB}$. So take P^{\prime} on AD with $\angle \mathrm{P}^{\prime} \mathrm{PQ}^{\prime}=90^{\circ}$. Then A lies inside the circle $\mathrm{P}^{\prime} \mathrm{PQ}^{\prime}$, so extend PA to meet it again at A^{\prime}. Then $\angle \mathrm{PA}^{\prime} \mathrm{Q}^{\prime}=\angle \mathrm{PP}^{\prime} \mathrm{Q}^{\prime}$ $=45^{\circ}$, so $\angle \mathrm{PAQ}^{\prime}=\angle \mathrm{PA}^{\prime} \mathrm{Q}^{\prime}+\angle \mathrm{AQ}^{\prime} \mathrm{Q}^{\prime}>45^{\circ}$. But $\angle \mathrm{PAQ}^{\prime}+\angle \mathrm{PAQ}=90^{\circ}$, so $\angle \mathrm{PAQ}^{\prime}>$ $\angle \mathrm{PAQ}$ as claimed.

2003/6. 2003 is prime, so $\mathrm{a}^{2002}=1 \bmod 2003$ for any a not divisible by 2003. Thus $\mathrm{a}_{\mathrm{n}+1}$ $=a_{n}{ }^{-1}+b_{n} \bmod 2003, b_{n+1}=b_{n}{ }^{-1}+a_{n} \bmod$ 2003. Put $c_{n}=a_{n} b_{n}$. Then $c_{n+1}=c_{n}+1 / c_{n}+2$ $=\left(c_{n}+1\right)_{2} / c_{n} \bmod 2003$. So if $c_{n} \neq 0 \bmod 2003$, then $c_{n+1} \neq 0 \bmod 2003$ unless $c_{n}=-1$ $\bmod 2003$. Then if $\mathrm{c}_{\mathrm{n}+1}=-1 \bmod 2003$, we must have $\left(\mathrm{c}_{\mathrm{n}}{ }^{2}+3 \mathrm{c}_{\mathrm{n}}+1\right) / \mathrm{c}_{\mathrm{n}}=0 \bmod 2003$, so $\mathrm{c}_{\mathrm{n}}{ }^{2}+3 \mathrm{c}_{\mathrm{n}}+1=0 \bmod 2003$. Note that $\mathrm{c}_{0}=4$. So it is sufficient to show that there are no solutions to $x^{2}+3 x+1=0 \bmod 2003$, or equivalently to $(x-1000)^{2}=1000^{2}-1=$ $502 \bmod$ 2003. In other words, we have to show that 502 is a quadratic non-residue mod 2003.

The easiest way to do that is to use the law of quadratic reciprocity, but that is almost certainly outside the syllabus. We note that $4 \cdot 502=5 \bmod 2003$, so 502 is a square iff 5 is a square. It is sufficient to show that $5^{1001}=-1 \bmod 2003$, for then if we had $x^{2}=5$, we would have $x^{2002}=-1 \bmod 2003$, whereas we know that $x^{2002}=1 \bmod 2003$. We note that $1001=7 \cdot 11 \cdot 13$. We start by showing that $5^{7}=8 \bmod 2003$. We have $5^{5}=3125$ $=1122 \bmod 2003$, so $5^{6}=5610=1604 \bmod 2003$, so $5^{7}=8020=8 \bmod 2003$.

We calculate successively $2^{11}=2048=45 \bmod 2003$, so $2^{22}=2025=22 \bmod 2003$. Multiplying by 22 is relatively easy, so $2^{44}=484,2^{66}=10648=633,2^{88}=13926=-95$, $2^{110}=-2090=-87,2^{132}=-1914=89,2^{143}=4005=-1$ all $\bmod 2003$. Hence $8^{11 \cdot 13}=-1$ $\bmod 2003$, so $5^{1001}=-1 \bmod 2003$, as required, and we are done.

