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1959/1: Prove that the fraction
21n + 4

14n + 3
is irreducible for every natural number n .

1959/2: For what real values of x is√
x +

√
2x− 1 +

√
x−√

2x− 1 = A ,

given (a) A =
√

2, (b) A = 1, (c) A = 2, where only non-negative real numbers

are admitted for square roots?

1959/3: Let a, b, c be real numbers. Consider the quadratic equation in cos x:

a cos2 x + b cosx + c = 0 .

Using the numbers a, b, c, form a quadratic equation in cos 2x, whose roots are the

same as those of the original equation. Compare the equations in cosx and cos 2x

for a = 4, b = 2, c = −1 .

1959/4: Construct a right triangle with given hypotenuse c such that the median

drawn to the hypotenuse is the geometric mean of the two legs of the triangle.

1959/5: An arbitrary point M is selected in the interior of the segment AB . The

squares AMCD and MBEF are constructed on the same side of AB, with the

segments AM and MB as their respective bases. The circles circumscribed about

these squares, with centers P and Q, intersect at M and also at another point N .

Let N ′ denote the point of intersection of the straight lines AF and BC .

(a) Prove that the points N and N ′ coincide.

(b) Prove that the straight lines MN pass through a fixed point S independent

of the choice of M .

(c) Find the locus of the midpoints of the segments PQ as M varies between A

and B .

1959/6: Two planes, P and Q, intersect along the line p . The point A is given in

the plane P , and the point C in the plane Q; neither of these points lies on the

straight line p . Construct an isosceles trapezoid ABCD (with AB parallel to CD)

in which a circle can be inscribed, and with vertices B and D lying in the planes

P and Q respectively.

1960/1: Determine all three-digit numbers N having the property that N is divisible

by 11, and N/11 is equal to the sum of the squares of the digits of N .

1960/2: For what values of the variable x does the following inequality hold,

4x2

(1 −√
1 + 2x)2

< 2x + 9 ?
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1960/3: In a given right triangle ABC, the hypotenuse BC, of length a, is divided

into n equal parts (n an odd integer). Let α be the acute angle subtending, from

A, that segment which contains the midpoint of the hypotenuse. Let h be the

length of the altitude to the hypotenuse of the triangle. Prove:

tanα =
4nh

(n2 − 1)a
.

1960/4: Construct triangle ABC, given ha, hb (the altitudes from A and B) and

ma, the median from vertex A .

1960/5: Consider the cube ABCDA′B′C ′D′ (with face ABCD directly above face

A′B′C ′D′).
(a) Find the locus of the midpoints of segments XY , where X is any point of AC

and Y is any point of B′D′ .
(b) Find the locus of points Z which lie on the segments XY of part (a) with

ZY = 2XZ .

1960/6: Consider a cone of revolution with an inscribed sphere tangent to the base

of the cone. A cylinder is circumscribed about this sphere so that one of its bases

lies in the base of the cone. Let V1 be the volume of the cone and V2 the volume

of the cylinder.

(a) Prove that V1 �= V2.

(b) Find the smallest number k for which V1 = kV2, for this case, construct the

angle subtended by a diameter of the base of the cone at the vertex of the

cone.

1960/7: An isosceles trapezoid with bases a and c and altitude h is given.

(a) On the axis of symmetry of this trapezoid, find all points P such that both

legs of the trapezoid subtend right angles at P .

(b) Calculate the distance of P from either base.

(c) Determine under what conditions such points P actually exist. (Discuss var-

ious cases that might arise.)

1961/1: Solve the system of equations:

x + y + z = a , x2 + y2 + z2 = b2 , xy = z2 ,

where a and b are constants. Give the conditions that a and b must satisfy so that

x, y, z (the solutions of the system) are distinct positive numbers.

1961/2: Let a, b, c be the sides of a triangle, and T its area. Prove: a2 + b2 + c2 ≥
4
√

3T . In what case does equality hold?

1961/3: Solve the equation cosn x− sinn x = 1, where n is a natural number.
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1961/4: Consider triangle P1P2P3 and a point P within the triangle. Lines P1P ,

P2P , P3P intersect the opposite sides in points Q1 , Q2 , Q3 respectively. Prove

that, of the numbers
P1P

PQ1

,
P2P

PQ2

,
P3P

PQ3

at least one is ≤ 2 and at least one is

≥ 2.

1961/5: Construct triangle ABC if AC = b , AB = c and �AMB = ω, where M

is the midpoint of segment BC and ω < 90◦. Prove that a solution exists if and

only if b tan
ω

2
≤ c < b . In what case does the equality hold?

1961/6: Consider a plane ε and three non-collinear points A,B,C on the same side

of ε; suppose the plane determined by these three points is not parallel to ε. In

plane a take three arbitrary points A′ , B′ , C ′ . Let L,M,N be the midpoints of

segments AA′ , BB′ , CC ′; let G be the centroid of triangle LMN .

(We will not consider positions of the points A′ , B′ , C ′ such that the points

L,M,N do not form a triangle.)

What is the locus of point G as A′ , B′ , C ′ range independently over the plane ε ?

1962/1: Find the smallest natural number n which has the following properties:

(a) Its decimal representation has 6 as the last digit.

(b) If the last digit 6 is erased and placed in front of the remaining digits, the

resulting number is four times as large as the original number n .

1962/2: Determine all real numbers x which satisfy the inequality:

√
3 − x−√

x + 1 >
1

2
.

1962/3: Consider the cube ABCDA′B′C ′D′ (ABCD and A′B′C ′D′ are the upper

and lower bases, respectively, and edges AA′ , BB′ , CC ′ , DD′ are parallel). The

point X moves at constant speed along the perimeter of the square ABCD in the

direction ABCDA, and the point Y moves at the same rate along the perimeter

of the square B′C ′CB in the direction B′C ′CBB′. Points X and Y begin their

motion at the same instant from the starting positions A and B′, respectively.

Determine and draw the locus of the midpoints of the segments XY .

1962/4: Solve the equation cos2 x + cos2 2x + cos2 3x = 1 .

1962/5: On the circle K there are given three distinct points A,B,C . Construct

(using only straightedge and compasses) a fourth point D on K such that a circle

can be inscribed in the quadrilateral thus obtained.

1962/6: Consider an isosceles triangle. Let r be the radius of its circumscribed

circle and ρ the radius of its inscribed circle. Prove that the distance d between

the centers of these two circles is d =
√
r(r − 2ρ) .
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1962/7: The tetrahedron SABC has the following property: there exist five spheres,

each tangent to the edges SA, SB, SC,BCCA,AB, or to their extensions.

(a) Prove that the tetrahedron SABC is regular.

(b) Prove conversely that for every regular tetrahedron five such spheres exist.

1963/1: Find all real roots of the equation
√
x2 − p + 2

√
x2 − 1 = x , where p is a

real parameter.

1963/2: Point A and segment BC are given. Determine the locus of points in space

which are vertices of right angles with one side passing through A, and the other

side intersecting the segment BC .

1963/3: In an n-gon all of whose interior angles are equal, the lengths of consecutive

sides satisfy the relation a1 ≥ a2 ≥ · · · ≥ an . Prove that a1 = a2 = · · · = an .

1963/4: Find all solutions x1, x2, x3, x4, x5 of the system

x5 + x2 = yx1

x1 + x3 = yx2

x2 + x4 = yx3

x3 + x5 = yx4

x4 + x1 = yx5,

where y is a parameter.

1963/5: Prove that cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2
.

1963/6: Five students, A,B,C,D,E, took part in a contest. One prediction was

that the contestants would finish in the order ABCDE . This prediction was

very poor. In fact no contestant finished in the position predicted, and no two

contestants predicted to finish consecutively actually did so. A second prediction

had the contestants finishing in the order DAECB . This prediction was better.

Exactly two of the contestants finished in the places predicted, and two disjoint

pairs of students predicted to finish consecutively actually did so. Determine the

order in which the contestants finished.

1964/1:

(a) Find all positive integers n for which 2n − 1 is divisible by 7 .

(b) Prove that there is no positive integer n for which 2n + 1 is divisible by 7 .

1964/2: Suppose a, b, c are the sides of a triangle. Prove that

a2(b + c− a) + b2(c + a− b) + c2(a + b− c) ≤ 3abc.
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1964/3: A circle is inscribed in triangle ABC with sides a, b, c . Tangents to the

circle parallel to the sides of the triangle are constructed. Each of these tangents

cuts off a triangle from ∆ABC . In each of these triangles, a circle is inscribed.

Find the sum of the areas of all four inscribed circles (in terms of a, b, c).

1964/4: Seventeen people correspond by mail with one another - each one with all

the rest. In their letters only three different topics are discussed. Each pair of

correspondents deals with only one of these topics. Prove that there are at least

three people who write to each other about the same topic.

1964/5: Suppose five points in a plane are situated so that no two of the straight

lines joining them are parallel, perpendicular, or coincident. From each point

perpendiculars are drawn to all the lines joining the other four points. Determine

the maximum number of intersections that these perpendiculars can have.

1964/6: In tetrahedron ABCD, vertex D is connected with D0 the centroid of

∆ABC . Lines parallel to DD0 are drawn through A,B and C . These lines

intersect the planes BCD,CAD and ABD in points A1, B1 and C1, respectively.

Prove that the volume of ABCD is one third the volume of A1B1C1D0 . Is the

result true if point D0 is selected anywhere within ∆ABC?

1965/1: Determine all values x in the interval 0 ≤ x ≤ 2π which satisfy the in-

equality 2 cos x ≤
∣∣∣√1 + sin 2x−√

1 − sin 2x
∣∣∣ ≤ √

2 .

1965/2: Consider the system of equations

a11x1 + a12x2 + a13x3 = 0

a21x1 + a22x2 + a23x3 = 0

a31x1 + a32x2 + a33x3 = 0

with unknowns x1, x2, x3. The coefficients satisfy the conditions:

(a) a11, a22, a33 are positive numbers;

(b) the remaining coefficients are negative numbers;

(c) in each equation, the sum of the coefficients is positive.

Prove that the given system has only the solution x1 = x2 = x3 = 0 .

1965/3: Given the tetrahedron ABCD whose edges AB and CD have lengths a

and b respectively. The distance between the skew lines AB and CD is d, and the

angle between them is ω. Tetrahedron ABCD is divided into two solids by plane

ε, parallel to lines AB and CD . The ratio of the distances of ε from AB and CD

is equal to k . Compute the ratio of the volumes of the two solids obtained.

1965/4: Find all sets of four real numbers x1, x2, x3, x4 such that the sum of any

one and the product of the other three is equal to 2 .
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1965/5: Consider ∆OAB with acute angle AOB . Through a point M �= 0 perpen-

diculars are drawn to OA and OB, the feet of which are P and Q respectively.

The point of intersection of the altitudes of ∆OPQ is H . What is the locus of H

if M is permitted to range over

(a) the side AB,

(b) the interior of ∆OAB?

1965/6: In a plane a set of n points (n ≥ 3) is given. Each pair of points is connected

by a segment. Let d be the length of the longest of these segments. We define

a diameter of the set to be any connecting segment of length d . Prove that the

number of diameters of the given set is at most n .

1966/1: In a mathematical contest, three problems, A,B,C were posed. Among

the participants there were 25 students who solved at least one problem each. Of

all the contestants who did not solve problem A, the number who solved B was

twice the number who solved C . The number of students who solved only problem

A was one more than the number of students who solved A and at least one other

problem. Of all students who solved just one problem, half did not solve problem

A . How many students solved only problem B?

1966/2: Let a, b, c be the lengths of the sides of a triangle, and α, β, γ, respectively,

the angles opposite these sides. Prove that if a+ b = tan
γ

2
(a tanα+ b tan β) , the

triangle is isosceles.

1966/3: Prove: The sum of the distances of the vertices of a regular tetrahedron

from the center of its circumscribed sphere is less than the sum of the distances

of these vertices from any other point in space.

1966/4: Prove that for every natural number n, and for every real number x �=
kπ/2t(t = 0, 1, . . . , n; k any integer)

1

sin 2x
+

1

sin 4x
+ · · · +

1

sin 2nx
= cotx− cot 2nx.

1966/5: Solve the system of equations

|a1 − a2|x2 + |a1 − a3|x3 + |a1 − a4|x4 = 1
|a2 − a1|x1 + |a2 − a3|x3 + |a2 − a3|x3 = 1
|a3 − a1|x1 + |a3 − a2|x2 = 1
|a4 − a1|x1 + |a4 − a2|x2 + |a4 − a3|x3 = 1

where a1, a2, a3, a4 are four different real numbers.

1966/6: In the interior of sides BC,CA,AB of triangle ABC, any points K,L,M ,

respectively, are selected. Prove that the area of at least one of the triangles

AML,BKM,CLK is less than or equal to one quarter of the area of triangle

ABC .
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1967/1: Let ABCD be a parallelogram with side lengths AB = a,AD = 1, and

with �BAD = α. If ∆ABD is acute, prove that the four circles of radius 1 with

centers A,B,C,D cover the parallelogram if and only if a ≤ cosα +
√

3 sinα .

1967/2: Prove that if one and only one edge of a tetrahedron is greater than 1, then

its volume is ≤ 1/8 .

1967/3: Let k,m, n be natural numbers such that m+k+ 1 is a prime greater than

n + 1 . Let cs = s(s + 1) . Prove that the product

(cm+1 − ck)(cm+2 − ck) . . . (cm+n − ck)

is divisible by the product c1c2 . . . cn.

1967/4: Let A0B0C0 and A1B1C1 be any two acute-angled triangles. Consider all

triangles ABC that are similar to ∆A1B1C1 (so that vertices A1, B1, C1 corre-

spond to vertices A,B,C, respectively) and circumscribed about triangle A0B0C0

(where A0 lies on BC,B0 on CA, and AC0 on AB). Of all such possible triangles,

determine the one with maximum area, and construct it.

1967/5: Consider the sequence {cn}, where

c1 = a1 + a2 + · · · + a8

c2 = a2
1 + a2

2 + · · · + a2
8

...

cn = an
1 + an

2 + · · · + an
8

...

in which a1, a2, . . . , a8 are real numbers not all equal to zero. Suppose that an

infinite number of terms of the sequence {cn} are equal to zero. Find all natural

numbers n for which cn = 0 .

1967/6: In a sports contest, there were m medals awarded on n successive days

(n > 1). On the first day, one medal and 1/7 of the remaining m− 1 medals were

awarded. On the second day, two medals and 1/7 of the now remaining medals

were awarded; and so on. On the n-th and last day, the remaining n medals

were awarded. How many days did the contest last, and how many medals were

awarded altogether?

1968/1: Prove that there is one and only one triangle whose side lengths are con-

secutive integers, and one of whose angles is twice as large as another.

1968/2: Find all natural numbers x such that the product of their digits (in decimal

notation) is equal to x2 − 10x− 22 .

delfos@mat.uc.pt http://www.mat.uc.pt/∼delfos/

Projecto Delfos: Escola de Matemática Para Jovens 8
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1968/3: Consider the system of equations

ax2
1 + bx1 + c = x2

ax2
2 + bx2 + c = x3

...

ax2
n−1 + bxn−1 + c = xn

ax2
n + bxn + c = x1,

with unknowns x1, x2, . . . , xn, where a, b, c are real and a �= 0 . Let ∆ = (b− 1)2 −
4ac . Prove that for this system

(a) if ∆ < 0, there is no solution,

(b) if ∆ = 0, there is exactly one solution,

(c) if ∆ > 0, there is more than one solution.

1968/4: Prove that in every tetrahedron there is a vertex such that the three edges

meeting there have lengths which are the sides of a triangle.

1968/5: Let f be a real-valued function defined for all real numbers x such that,

for some positive constant a, the equation f(x + a) =
1

2
+
√
f(x) − [f(x)]2 holds

for all x .

(a) Prove that the function f is periodic (i.e., there exists a positive number b

such that f(x + b) = f(x) for all x).

(b) For a = 1, give an example of a non-constant function with the required

properties.

1968/6: For every natural number n, evaluate the sum

∞∑
k=0

[
n + 2k

2k+1

]
=

[
n + 1

2

]
+

[
n + 2

4

]
+ · · · +

[
n + 2k

2k+1

]
+ . . .

(The symbol [x] denotes the greatest integer not exceeding x .)

1969/1: Prove that there are infinitely many natural numbers a with the following

property: the number z = n4 + a is not prime for any natura1 number n .

1969/2: Let a1, a2, . . . , an be real constants, x a real variable, and

f(x) = cos(a1 + x) +
1

2
cos(a2 + x) +

1

4
cos(a3 + x) + · · · +

1

2n−1
cos(an + x) .

Given that f(x1) = f(x2) = 0, prove that x2 − x1 = mπ for some integer m .

1969/3: For each value of k = 1, 2, 3, 4, 5, find necessary and sufficient conditions

on the number a > 0 so that there exists a tetrahedron with k edges of length a,

and the remaining 6 − k edges of length 1.
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Colecção de Problemas das IMO 1959-presente

1969/4: A semicircular arc γ is drawn on AB as diameter. C is a point on γ other

than A and B, and D is the foot of the perpendicular from C to AB . We consider

three circles, γ1, γ2, γ3, all tangent to the line AB . Of these, γ1 is inscribed in

∆ABC, while γ2 and γ3 are both tangent to CD and to γ, one on each side of

CD . Prove that γ1, γ2 and γ3 have a second tangent in common.

1969/5: Given n > 4 points in the plane such that no three are collinear. Prove

that there are at least

(
n− 3

2

)
convex quadrilaterals whose vertices are four of

the given points.

1969/6: Prove that for all real numbers x1, x2, y1, y2, z1, z2, with x1 > 0, x2 >

0, x1y1 − z2
1 > 0, x2y2 − z2

2 > 0, the inequality

8

(x1 + x2) (y1 + y2) − (z1 + z2)
2 ≤ 1

x1y1 − z2
1

+
1

x2y2 − z2
2

is satisfied. Give necessary and sufficient conditions for equality.

1970/1: Let M be a point on the side AB of ∆ABC . Let r1, r2 and r be the radii

of the inscribed circles of triangles AMC,BMC and ABC . Let q1, q2 and q be

the radii of the escribed circles of the same triangles that lie in the angle ACB .

Prove that
r1

q1
· r2

q2
=
r

q
.

1970/2: Let a, b and n be integers greater than 1, and let a and b be the bases of

two number systems. An−1 and An are numbers in the system with base a, and

Bn−1 and Bnare numbers in the system with base b; these are related as follows:

An = xnxn−1 . . . x0, An−1 = xn−1xn−2 . . . x0,

Bn = xnxn−1 . . . x0, Bn−1 = xn−1xn−2 . . . x0,

xn �= 0, xn−1 �= 0.

Prove
An−1

An

<
Bn−1

Bn

if and only if a > b .

1970/3: The real numbers a0, a1, . . . , an, . . . satisfy the condition:

1 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ . . . .

The numbers b1, b2, . . . , bn, . . . are defined by bn =
n∑

k=1

(
1 − ak−1

ak

)
1√
ak

.

(a) Prove that 0 ≤ bn < 2 for all n .

(b) Given c with 0 ≤ c < 2, prove that there exist numbers a0, a1, . . . with the

above properties such that bn > c for large enough n .

1970/4: Find the set of all positive integers n with the property that the set {n, n+

1, n+ 2, n+ 3, n+ 4, n+ 5} can be partitioned into two sets such that the product

of the numbers in one set equals the product of the numbers in the other set.

delfos@mat.uc.pt http://www.mat.uc.pt/∼delfos/

Projecto Delfos: Escola de Matemática Para Jovens 10
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1970/5: In the tetrahedron ABCD, angle BDC is a right angle. Suppose that the

foot H of the perpendicular from D to the plane ABC is the intersection of the

altitudes of ∆ABC . Prove that

(AB + BC + CA)2 ≤ 6(AD2 + BD2 + CD2) .

For what tetrahedra does equality hold?

1970/6: In a plane there are 100 points, no three of which are collinear. Consider

all possible triangles having these points as vertices. Prove that no more than 70%

of these triangles are acute-angled.

1971/1: Prove that the following assertion is true for n = 3 and n = 5, and that it

is false for every other natural number n > 2:

If a1, a2, . . . , an are arbitrary real numbers, then

(a1 − a2)(a1 − a3) . . . (a1 − an) + (a2 − a1)(a2 − a3) . . . (a2 − an)

+ · · · + (an − a1)(an − a2) . . . (an − an−1) ≥ 0

1971/2: Consider a convex polyhedron P1 with nine vertices A1A2, . . . , A9; let Pi

be the polyhedron obtained from P1 by a translation that moves vertex A1 to

Ai (i = 2, 3, . . . , 9) . Prove that at least two of the polyhedra P1, P2, . . . , P9 have

an interior point in common.

1971/3: Prove that the set of integers of the form 2k − 3 (k = 2, 3, . . . ) contains an

infinite subset in which every two members are relatively prime.

1971/4: All the faces of tetrahedron ABCD are acute-angled triangles. We consider

all closed polygonal paths of the form XY ZTX defined as follows: X is a point

on edge AB distinct from A and B; similarly, Y, Z, T are interior points of edges

BCCD,DA, respectively. Prove:

(a) If �DAB + �BCD �= �CDA + �ABC, then among the polygonal paths,

there is none of minimal length.

(b) If �DAB + �BCD = �CDA + �ABC, then there are infinitely many

shortest polygonal paths, their common length being 2AC sin(α/2), where

α = �BAC + �CAD + �DAB .

1971/5: Prove that for every natural number m, there exists a finite set S of points

in a plane with the following property: For every point A in S, there are exactly

m points in S which are at unit distance from A .

1971/6: Let A = (aij) (i, j = 1, 2, . . . , n) be a square matrix whose elements are

non-negative integers. Suppose that whenever an element aij = 0, the sum of the

elements in the ith row and the jth column is ≥ n. Prove that the sum of all the

elements of the matrix is ≥ n2/2 .
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1972/1: Prove that from a set of ten distinct two-digit numbers (in the decimal

system), it is possible to select two disjoint subsets whose members have the same

sum.

1972/2: Prove that if n ≥ 4, every quadrilateral that can be inscribed in a circle

can be dissected into n quadrilaterals each of which is inscribable in a circle.

1972/3: Let m and n be arbitrary non-negative integers. Prove that

(2m)!(2n)!

m!n!(m + n)!
is an integer. (0! = 1 .)

1972/4: Find all solutions (x1, x2, x3, x4, x5) of the system of inequalities

(x2
1 − x3x5)(x

2
2 − x3x5) ≤ 0

(x2
2 − x4x1)(x

2
3 − x4x1) ≤ 0

(x2
3 − x5x2)(x

2
4 − x5x2) ≤ 0

(x2
4 − x1x3)(x

2
5 − x1x3) ≤ 0

(x2
5 − x2x4)(x

2
1 − x2x4) ≤ 0

where x1, x2, x3, x4, x5 are positive real numbers.

1972/5: Let f and g be real-valued functions defined for all real values of x and y,

and satisfying the equation

f(x + y) + f(x− y) = 2f(x)g(y) , for all x, y .

Prove that if f(x) is not identically zero, and if |f(x)| ≤ 1 for all x, then |g(y)| ≤ 1

for all y .

1972/6: Given four distinct parallel planes, prove that there exists a regular tetra-

hedron with a vertex on each plane.

1973/1: Point O lies on line g;
−−→
OP1,

−−→
OP2, . . . ,

−−→
OPn are unit vectors such that points

P1, P2, . . . , Pn all lie in a plane containing g and on one side of g . Prove that if

n is odd,
∣∣∣−−→OP1 +

−−→
OP2 + · · · +

−−→
OPn

∣∣∣ ≥ 1 . Here
∣∣∣−−→OM ∣∣∣ denotes the length of vector

−−→
OM .

1973/2: Determine whether or not there exists a finite set M of points in space not

lying in the same plane such that, for any two points A and B of M , one can

select two other points C and D of M so that lines AB and CD are parallel and

not coincident.
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1973/3: Let a and b be real numbers for which the equation x4+ax3+bx2+ax+1 = 0

has at least one real solution. For all such pairs (a, b), find the minimum value of

a2 + b2 .

1973/4: A soldier needs to check on the presence of mines in a region having the

shape of an equilateral triangle. The radius of action of his detector is equal to

half the altitude of the triangle. The soldier leaves from one vertex of the triangle.

What path shouid he follow in order to travel the least possible distance and still

accomplish his mission?

1973/5: G is a set of non-constant functions of the real variable x of the form

f(x) = ax + b, a and b are real numbers,

and G has the following properties:

(a) If f and g are in G, then g ◦ f is in G; here (g ◦ f)(x) = g[f(x)] .

(b) If f is in G, then its inverse f−1 is in G; here the inverse of f(x) = ax + b is

f−1(x) = (x− b)/a .

(c) For every f in G, there exists a real number xf such that f(xf ) = xf .

Prove that there exists a real number k such that f(k) = k for all f in G .

1973/6: Let a1, a2, . . . , an be n positive numbers, and let q be a given real number

such that 0 < q < 1 . Find n numbers b1, b2, . . . , bn for which

(a) ak < bk for k = 1, 2, . . . , n,

(b) q <
bk+1

bk
<

1

q
for k = 1, 2, . . . , n− 1,

(c) b1 + b2 + · · · + bn <
1 + q

1 − q
(a1 + a2 + · · · + an) .

1974/1: Three players A,B and C play the following game: On each of three cards

an integer is written. These three numbers p, q, r satisfy 0 < p < q < r . The three

cards are shuffled and one is dealt to each player. Each then receives the number

of counters indicated by the card he holds. Then the cards are shuffled again; the

counters remain with the players.

This process (shuffling, dealing, giving out counters) takes place for at least two

rounds. After the last round, A has 20 counters in all, B has 10 and C has 9 . At

the last round B received r counters. Who received q counters on the first round?

1974/2: In the triangle ABC, prove that there is a point D on side AB such that

CD is the geometric mean of AD and DB if and only if sinA sinB ≤ sin2 C

2
.

1974/3: Prove that
n∑

k=0

(
2n + 1

2k + 1

)
23k is not divisible by 5 for any integer n ≥ 0 .

1974/4: Consider decompositions of an 8 × 8 chessboard into p non-overlapping

rectangles subject to the following conditions:
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(i) Each rectangle has as many white squares as black squares.

(ii) If ai is the number of white squares in the i-th rectangle, then a1 < a2 <

· · · < ap. Find the maximum value of p for which such a decomposition is

possible. For this value of p, determine all possible sequences a1, a2, . . . , ap.

1974/5: Determine all possible values of

S =
a

a + b + d
+

b

a + b + c
+

c

b + c + d
+

d

a + c + d

where a, b, c, d are arbitrary positive numbers.

1974/6: Let P be a non-constant polynomial with integer coefficients. If n(P ) is the

number of distinct integers k such that (P (k))2 = 1, prove that n(P )− gr(P ) ≤ 2,

where gr(P ) denotes the degree of the polynomial P .

1975/1: Let xi, yi (i = 1, 2, . . . , n) be real numbers such that

x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn .

Prove that, if z1, z2, . . . , zn is any permutation of y1, y2, . . . , yn, then

n∑
i=1

(xi − yi)
2 ≤

n∑
i=1

(xi − zi)
2 .

1975/2: Let a1, a2, a3, . . . be an infinite increasing sequence of positive integers.

Prove that for every p ≥ 1 there are infinitely many am which can be written in

the form am = xap + yaq with x, y positive integers and q > p .

1975/3: On the sides of an arbitrary triangle ABC, triangles ABR,BCP,CAQ

are constructed externally with �CBP = �CAQ = 45◦,�BCP = �ACQ =

30◦,�ABR = �BAR = 15◦ . Prove that �QRP = 90◦ and QR = RP .

1975/4: When 44444444 is written in decimal notation, the sum of its digits is A .

Let B be the sum of the digits of A . Find the sum of the digits of B . (A and B

are written in decimal notation.)

1975/5: Determine, with proof, whether or not one can find 1975 points on the

circumference of a circle with unit radius such that the distance between any two

of them is a rational number.

1975/6: Find all polynomials P , in two variables, with the following properties:

(i) for a positive integer n and all real t, x, y P (tx, ty) = tnP (x, y) (that is, P is

homogeneous of degree n),

(ii) for all real a, b, c, P (b + c, a) + P (c + a, b) + P (a + b, c) = 0 ,

(iii) P (1, 0) = 1 .
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1976/1: In a plane convex quadrilateral of area 32, the sum of the lengths of two

opposite sides and one diagonal is 16 . Determine all possible lengths of the other

diagonal.

1976/2: Let P1(x) = x2−2 and Pj(x) = P1(Pj−1(x)) for j = 2, 3, . . . . Show that, for

any positive integer n, the roots of the equation Pn(x) = x are real and distinct.

1976/3: A rectangular box can be filled completely with unit cubes. If one places

as many cubes as possible, each with volume 2, in the box, so that their edges are

parallel to the edges of the box, one can fill exactly 40% of the box. Determine

the possible dimensions of all such boxes.

1976/4: Determine, with proof, the largest number which is the product of positive

integers whose sum is 1976 .

1976/5: Consider the system of p equations in q = 2p unknowns x1, x2, . . . , xq :

a11x1 + a12x2 + · · · + a1qxq = 0

...

ap1x1 + ap2x2 + · · · + apqxq = 0

with every coefficient aij member of the set {−1, 0, 1} . Prove that the system has

a solution (x1, x2, . . . , xq) such that

(a) all xj (j = 1, 2, . . . , q) are integers,

(b) there is at least one value of j for which xj �= 0,

(c) |xj| ≤ q(j = 1, 2, . . . , q) .

1976/6: A sequence {un} is defined by

u0 = 2, u1 = 5/2, un+1 = un(u2
n−1 − 2) − u1 for n = 1, 2, . . .

Prove that for positive integers n, [un] = 2[2n−(−1)n]/3 where [x] denotes the greatest

integer ≤ x .

1977/1: Equilateral triangles ABK,BCL,CDM,DAN are constructed inside the

square ABCD . Prove that the midpoints of the four segments KL,LM,MN,NK

and the midpoints of the eight segments AKBK,BL,CL,CM,DM,DN,AN are

the twelve vertices of a regular dodecagon.

1977/2: In a finite sequence of real numbers the sum of any seven successive terms

is negative, and the sum of any eleven successive terms is positive. Determine the

maximum number of terms in the sequence.

1977/3: Let n be a given integer > 2, and let Vn be the set of integers 1 + kn,

where k = 1, 2, . . . . A number m ∈ Vn is called indecomposable in Vn if there do

not exist numbers p, q ∈ Vn such that pq = m . Prove that there exists a number

r ∈ Vn that can be expressed as the product of elements indecomposable in Vn in
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more than one way. (Products which differ only in the order of their factors will

be considered the same.)

1977/4: Four real constants a, b, A,B are given, and

f(θ) = 1 − a cos θ − b sin θ − A cos 2θ −B sin 2θ.

Prove that if f(θ) ≥ 0 for all real θ, then a2 + b2 ≤ 2 and A2 + B2 ≤ 1 .

1977/5: Let a and b be positive integers. When a2 + b2 is divided by a + b, the

quotient is q and the remainder is r . Find all pairs (a, b) such that q2 + r = 1977 .

1977/6: Let f(n) be a function defined on the set of all positive integers and having

all its values in the same set. Prove that if f(n + 1) > f(f(n)) for each positive

integer n, then f(n) = n for each n .

1978/1: m and n are natural numbers with 1 ≤ m < n . In their decimal repre-

sentations, the last three digits of 1978m are equal, respectively, to the last three

digits of 1978n. Find m and n such that m + n has its least value.

1978/2: P is a given point inside a given sphere. Three mutually perpendicular

rays from P intersect the sphere at points U, V , and W ;Q denotes the vertex

diagonally opposite to P in the parallelepiped determined by PU, PV , and PW .

Find the locus of Q for all such triads of rays from P

1978/3: The set of all positive integers is the union of two disjoint subsets

{f(1), f(2), . . . , f(n), . . . } , {g(1), g(2), . . . , g(n), . . . } ,
where

f(1) < f(2) < · · · < f(n) < . . . , g(1) < g(2) < · · · < g(n) < . . . ,

and g(n) = f(f(n)) + 1 for all n ≥ 1 . Determine f(240) .

1978/4: In triangle ABC,AB = AC . A circle is tangent internally to the circum-

circle of triangle ABC and also to sides AB,AC at P,Q, respectively. Prove that

the midpoint of segment PQ is the center of the incircle of triangle ABC .

1978/5: Let {ak}(k = 1, 2, 3, . . . , n, . . . ) be a sequence of distinct positive integers.

Prove that for all natural numbers n,
n∑

k=1

ak

k2
≥

n∑
k=1

1

k
.

1978/6: An international society has its members from six different countries. The

list of members contains 1978 names, numbered 1, 2, . . . , 1978. Prove that there

is at least one member whose number is the sum of the numbers of two members

from his own country, or twice as large as the number of one member from his

own country.
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1979/1: Let p and q be natural numbers such that

p

q
= 1 − 1

2
+

1

3
− 1

4
+ · · · − 1

1318
+

1

1319
.

Prove that p is divisible by 1979 .

1979/2: A prism with pentagons A1A2A3A4A5 and B1B2B3B4B5 as top and bottom

faces is given. Each side of the two pentagons and each of the line-segments AiBj

for all i, j = 1, . . . , 5, is colored either red or green. Every triangle whose vertices

are vertices of the prism and whose sides have all been colored has two sides of a

different color. Show that all 10 sides of the top and bottom faces are the same

color.

1979/3: Two circles in a plane intersect. Let A be one of the points of intersection.

Starting simultaneously from A two points move with constant speeds, each point

travelling along its own circle in the same sense. The two points return to A

simultaneously after one revolution. Prove that there is a fixed point P in the

plane such that, at any time, the distances from P to the moving points are equal.

1979/4: Given a plane π, a point P in this plane and a point Q not in π, find all

points R in π such that the ratio (QP + PA)/QR is a maximum.

1979/5: Find all real numbers a for which there exist non-negative real numbers

x1, x2, x3, x4, x5 satisfying the relations

5∑
k=1

kxk = a,

5∑
k=1

k3xk = a2,

5∑
k=1

k5xk = a3.

1979/6: Let A and E be opposite vertices of a regular octagon. A frog starts

jumping at vertex A. From any vertex of the octagon except E, it may jump to

either of the two adjacent vertices. When it reaches vertex E, the frog stops and

stays there. Let an be the number of distinct paths of exactly n jumps ending at

E . Prove that a2n−1 = 0,

a2n =
1√
2

(xn−1 − yn−1) , n = 1, 2, 3, . . . ,

where x = 2 +
√

2 and y = 2 −
√

2 .

Note. A path of n jumps is a sequence of vertices (P0, . . . , Pn) such that

(i) P0 = A,Pn = E;

(ii) for every i, 0 ≤ i ≤ n− 1, Pi is distinct from E;

(iii) for every i, 0 ≤ i ≤ n− 1, Pi and Pi+1 are adjacent.
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1981/1: P is a point inside a given triangle ABC.D,E, F are the feet of the per-

pendiculars from P to the lines BC,CA,AB respectively. Find all P for which

BC

PD
+
CA

PE
+
AB

PF
is least .

1981/2: Let 1 ≤ r ≤ n and consider all subsets of r elements of the set {1, 2, . . . , n}.

Each of these subsets has a smallest member. Let F (n, r) denote the arithmetic

mean of these smallest numbers; prove that F (n, r) =
n + 1

r + 1
.

1981/3: Determine the maximum value of m3 + n3,where m and n are integers

satisfying m,n ∈ {1, 2, . . . , 1981} and (n2 −mn−m2)2 = 1 .

1981/4:

(a) For which values of n > 2 is there a set of n consecutive positive integers such

that the largest number in the set is a divisor of the least common multiple

of the remaining n− 1 numbers?

(b) For which values of n > 2 is there exactly one set having the stated property?

1981/5: Three congruent circles have a common point O and lie inside a given

triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter

and the circumcenter of the triangle and the point O are collinear.

1981/6: The function f(x, y) satisfies (1) f(0, y) = y + 1 , (2) f(x+ 1, 0) = f(x, 1) ,

(3) f(x+1, y+1) = f(x, f(x+1, y)) , for all non-negative integers x, y . Determine

f(4, 1981) .

1982/1: The function f(n) is defined for all positive integers n and takes on non-

negative integer values. Also, for all m,n

f(m + n) − f(m) − f(n) = 0 or 1

f(2) = 0, f(3) > 0 , and f(9999) = 3333 .

Determine f(1982) .

1982/2: A non-isosceles triangle A1A2A3 is given with sides a1, a2, a3 (ai is the side

opposite Ai). For all i = 1, 2, 3,Mi is the midpoint of side ai, and Ti. is the point

where the incircle touches side ai. Denote by Si the reflection of Ti in the interior

bisector of angle Ai. Prove that the lines M1, S1,M2S2, and M3S3 are concurrent.

1982/3: Consider the infinite sequences {xn} of positive real numbers with the

properties, x0 = 1, and for all i ≥ 0 , xi+1 ≤ xi .

(a) Prove that for every such sequence, there is an n ≥ 1 such that

x2
0

x1

+
x2

1

x2

+ · · · +
x2

n−1

xn

≥ 3.999.
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(b) Find such a sequence for which

x2
0

x1

+
x2

1

x2

+ · · · +
x2

n−1

xn

< 4.

1982/4: Prove that if n is a positive integer such that the equation

x3 − 3xy2 + y3 = n

has a solution in integers (x, y), then it has at least three such solutions.

Show that the equation has no solutions in integers when n = 2891 .

1982/5: The diagonals AC and CE of the regular hexagon ABCDEF are divided

by the inner points M and N , respectively, so that
AM

AC
=
CN

CE
= r . Determine

r if B,M , and N are collinear.

1982/6: Let S be a square with sides of length 100, and let L be a path within S

which does not meet itself and which is composed of line segments A0A1, A1A2, . . . ,

An−1An with A0 �= An. Suppose that for every point P of the boundary of S there

is a point of L at a distance from P not greater than 1/2 . Prove that there are

two points X and Y in L such that the distance between X and Y is not greater

than 1, and the length of that part of L which lies between X and Y is not smaller

than 198 .

1983/1: Find all functions f defined on the set of positive real numbers which take

positive real values and satisfy the conditions:

(i) f(xf(y)) = yf(x) for all positive x, y;

(ii) f(x) → 0 as x → ∞ .

1983/2: Let A be one of the two distinct points of intersection of two unequal

coplanar circles C1 and C2 with centers O1 and O2, respectively. One of the

common tangents to the circles touches C1 at P1 and C2 at P2, while the other

touches C1 at Q1 and C2 at Q2. Let M1 be the midpoint of P1Q1,and M2 be the

midpoint of P2Q2. Prove that �O1AO2 = �M1AM2.

1983/3: Let a, b and c be positive integers, no two of which have a common divisor

greater than 1 . Show that 2abc−ab−bc−ca is the largest integer which cannot be

expressed in the form xbc + yca + zab,where x, y and z are non-negative integers.

1983/4: Let ABC be an equilateral triangle and E the set of all points contained in

the three segments AB,BC and CA (including A,B and C). Determine whether,

for every partition of E into two disjoint subsets, at least one of the two subsets

contains the vertices of a right-angled triangle. Justify your answer.
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Colecção de Problemas das IMO 1959-presente

1983/5: Is it possible to choose 1983 distinct positive integers, all less than or equal

to 105, no three of which are consecutive terms of an arithmetic progression?

Justify your answer.

1983/6: Let a, b and c be the lengths of the sides of a triangle. Prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0 .

Determine when equality occurs.

1984/1: Prove that 0 ≤ yz + zx + xy − 2xyz ≤ 7/27, where x, y and z are non-

negative real numbers for which x + y + z = 1 .

1984/2: Find one pair of positive integers a and b such that:

(i) ab(a + b) is not divisible by 7;

(ii) (a + b)7 − a7 − b7 is divisible by 77 .

Justify your answer.

1984/3: In the plane two different points O and A are given. For each point X of

the plane, other than O, denote by a(X) the measure of the angle between OA

and OX in radians, counterclockwise from OA(0 ≤ a(X) < 2π) . Let C(X) be

the circle with center O and radius of length OX + a(X)/OX . Each point of the

plane is colored by one of a finite number of colors. Prove that there exists a point

Y for which a(Y ) > 0 such that its color appears on the circumference of the circle

C(Y ) .

1984/4: Let ABCD be a convex quadrilateral such that the line CD is a tangent

to the circle on AB as diameter. Prove that the line AB is a tangent to the circle

on CD as diameter if and only if the lines BC and AD are parallel.

1984/5: Let d be the sum of the lengths of all the diagonals of a plane convex

polygon with n vertices (n > 3), and let p be its perimeter. Prove that

n− 3 <
2d

p
<
[n

2

] [n + 1

2

]
− 2,

where [x] denotes the greatest integer not exceeding x .

1984/6: Let a, b, c and d be odd integers such that 0 < a < b < c < d and ad = bc .

Prove that if a + d = 2k and b + c = 2m for some integers k and m, then a = 1 .

1985/1: A circle has center on the side AB of the cyclic quadrilateral ABCD . The

other three sides are tangent to the circle. Prove that AD + BC = AB .

1985/2: Let n and k be given relatively prime natural numbers, k < n . Each

number in the set M = {1, 2, . . . , n− 1} is colored either blue or white. It is given

that:
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(i) for each i ∈ M , both i and n− i have the same color;

(ii) for each i ∈ M, i �= k, both i and |i− k| have the same color.

Prove that all numbers in M must have the same color.

1985/3: For any polynomial P (x) = a0 + a1x+ · · · + akx
k with integer coefficients,

the number of coefficients which are odd is denoted by w(P ) . For i = 0, 1, . . . , let

Qi(x) = (1 + x)i . Prove that if i1i2, . . . , in are integers such that 0 ≤ i1 < i2 <

· · · < in, then w(Qi1 + Qi2 ,+ + Qin) ≥ w(Qi1) .

1985/4: Given a set M of 1985 distinct positive integers, none of which has a prime

divisor greater than 26. Prove that M contains at least one subset of four distinct

elements whose product is the fourth power of an integer.

1985/5: A circle with center O passes through the vertices A and C of triangle

ABC and intersects the segments AB and BC again at distinct points K and N ,

respectively. The circumscribed circles of the triangles ABC and EBN intersect

at exactly two distinct points B and M . Prove that angle OMB is a right angle.

1985/6: For every real number x1, construct the sequence x1, x2, . . . by setting

xn+1 = xn

(
xn +

1

n

)
for each n ≥ 1.

Prove that there exists exactly one value of x1 for which 0 < xn < xn+1 < 1 for

every n .

1986/1: Let d be any positive integer not equal to 2, 5, or 13. Show that one can

find distinct a, b in the set {2, 5, 13, d} such that ab− 1 is not a perfect square.

1986/2: A triangle A1A2A3 and a point P0 are given in the plane. We define As =

As−3 for all s ≥ 4. We construct a set of points P1, P2, P3, . . . , such that Pk+1 is the

image of Pk under a rotation with center Ak+1 through angle 120◦ clockwise (for

k = 0, 1, 2, . . . ). Prove that if P1986 = P0, then the triangle A1A2A3 is equilateral.

1986/3: To each vertex of a regular pentagon an integer is assigned in such a way

that the sum of all five numbers is positive. If three consecutive vertices are

assigned the numbers x, y, z respectively and y < 0 then the following operation

is allowed: the numbers x, y, z are replaced by x+ y, −y, z+ y respectively. Such

an operation is performed repeatedly as long as at least one of the five numbers

is negative. Determine whether this procedure necessarily comes to and end after

a finite number of steps.

1986/4: Let A, B be adjacent vertices of a regular n-gon (n ≥ 5) in the plane having

center at O. A triangle XY Z, which is congruent to and initially conincides with

OAB, moves in the plane in such a way that Y and Z each trace out the whole

boundary of the polygon, X remaining inside the polygon. Find the locus of X.
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1986/5: Find all functions f , defined on the non-negative real numbers and taking

non-negative real values, such that:

(i) f(xf(y))f(y) = f(x + y) for all x, y ≥ 0,

(ii) f(2) = 0,

(iii) f(x) �= 0 for 0 ≤ x < 2.

1986/6: One is given a finite set of points in the plane, each point having integer

coordinates. Is it always possible to color some of the points in the set red and the

remaining points white in such a way that for any straight line L parallel to either

one of the coordinate axes the difference (in absolute value) between the numbers

of white point and red points on L is not greater than 1?

1987/1: Let pn(k) be the number of permutations of the set {1, . . . , n}, n ≥ 1,

which have exactly k fixed points. Prove that
n∑

k=0

k · pn(k) = n! .

(Remark: A permutation f of a set S is a one-to-one mapping of S onto itself.

An element i in S is called a fixed point of the permutation f if f(i) = i.)

1987/2: In an acute-angled triangle ABC the interior bisector of the angle A inter-

sects BC at L and intersects the circumcircle of ABC again at N . From point L

perpendiculars are drawn to AB and AC, the feet of these perpendiculars being K

and M respectively. Prove that the quadrilateral AKNM and the triangle ABC

have equal areas.

1987/3: Let x1, x2, . . . , xn be real numbers satisfying x2
1 +x2

2 + · · ·+x2
n = 1. Prove

that for every integer k ≥ 2 there are integers a1, a2, . . . , an, not all 0, such that

|ai| ≤ k − 1 for all i and

|a1x1 + a1x2 + · · · + anxn| ≤ (k − 1)
√
n

kn − 1
.

1987/4: Prove that there is no function f from the set of non-negative integers into

itself such that f(f(n)) = n + 1987 for every n.

1987/5: Let n be an integer greater than or equal to 3. Prove that there is a set of

n points in the plane such that the distance between any two points is irrational

and each set of three points determines a non-degenerate triangle with rational

area.

1987/6: Let n be an integer greater than or equal to 2. Prove that if k2 + k + n is

prime for all integers k such that 0 ≤ k ≤
√
n/3, then k2 + k + n is prime for all

integers k such that 0 ≤ k ≤ n− 2.
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1988/1: Consider two coplanar circles of radii R and r (R > r) with the same

center. Let P be a fixed point on the smaller circle and B a variable point on the

larger circle. The line BP meets the larger circle again at C. The perpendicular

l to BP at P meets the smaller circle again at A. (If l is tangent to the circle at

P then A = P .)

(i) Find the set of values of BC2 + CA2 + AB2.

(ii) Find the locus of the midpoint of BC.

1988/2: Let n be a positive integer and let A1, A2, . . . , A2n+1 be subsets of a set

B. Suppose that:

(a) Each Ai has exactly 2n elements,

(b) Each Ai ∩ Aj (1 ≤ i < j ≤ 2n + 1) contains exactly one element, and

(c) Every element of B belongs to at least two of the Ai.

For which values of n can one assign to every element of B one of the numbers 0

and 1 in such a way that Ai has 0 assigned to exactly n of its elements?

1988/3: A function f is defined on the positive integers by

f(1) = 1, f(3) = 3,

f(2n) = f(n),

f(4n + 1) = 2f(2n + 1) − f(n),

f(4n + 3) = 3f(2n + 1) − 2f(n),

for all positive integers n.

Determine the number of positive integers n, less than or equal to 1988, for

which f(n) = n.

1988/4: Show that set of real numbers x which satisfy the inequality

70∑
k=1

k

x− k
≥ 5

4

is a union of disjoint intervals, the sum of whose lengths is 1988.

1988/5: ABC is a triangle right-angled at A, and D is the foot of the altitude from

A. The straight line joining the incenters of the triangles ABD, ACD intersects

the sides AB, AC at the points K, L respectively. S and T denote the areas of

the triangles ABC and AKL respectively. Show that S ≥ 2T .

1988/6: Let a and b be positive integers such that ab+ 1 divides a2 + b2. Show that

a2 + b2

ab + 1
is the square of an integer.

1989/1: Prove that the set {1, 2, . . . , 1989} can be expressed as the disjoint union

of subsets Ai (i = 1, 2, . . . , 117) such that:
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(i) Each Ai contains 17 elements;

(ii) The sum of all the elements in each Ai is the same.

1989/2: In an acute-angled triangle ABC the internal bisector of angle A meets the

circumcircle of the triangle again at A1. Points B1 and C1 are defined similarly.

Let A0 be the point of intersection of the line AA1 with the external bisectors of

angles B and C. Points B0 and C0 are defined similarly. Prove that:

(i) The area of the triangle A0B0C0 is twice the area of the hexagon AC1BA1CB1.

(ii) The area of the triangle A0B0C0 is at least four times the area of the triangle

ABC.

1989/3: Let n and k be positive integers and let S be a set of n points in the plane

such that

(i) No three points of S are collinear, and

(ii) For any point P of S there are at least k points of S equidistant from P .

Prove that k <
1

2
+
√

2n .

1989/4: Let ABCD be a convex quadrilateral such that the sides AB, AD, BC

satisfy AB = AD + BC. There exists a point P inside the quadrilateral at a

distance h from the line CD such that AP = h + AD and BP = h + BC. Show

that
1√
h
≥ 1√

AD
+

1√
BC

.

1989/5: Prove that for each positive integer n there exist n consecutive positive

integers none of which is an integral power of a prime number.

1989/6: A permutation (x1, x2, . . . , xm) of the set {1, 2, . . . , 2n}, where n is a pos-

itive integer, is said to have property P if |xi − xi+1| = n for at least one i in

{1, 2, . . . , 2n− 1}. Show that, for each n, there are more permutations with prop-

erty P than without.

1990/1: Chords AB and CD of a circle intersect at a point E inside the circle. Let

M be an interior point of the segment EB. The tangent line at E to the circle

through D, E, and M intersects the lines BC and AC at F and G, respectively.

If
AM

AB
= t , find

EG

EF
in terms of t.

1990/2: Let n ≥ 3 and consider a set E of 2n−1 distinct points on a circle. Suppose

that exactly k of these points are to be colored black. Such a coloring is “good”

if there is at least one pair of black points such that the interior of one of the arcs

between them contains exactly n points from E. Find the smallest value of k so

that every such coloring of k points of E is good.

1990/3: Determine all integers n > 1 such that
2n + 1

n2
is an integer.
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1990/4: Let Q+ be the set of positive rational numbers. Construct a function

f : Q+ → Q+ such that f(xf(y)) =
f(x)

y
for all x, y in Q+.

1990/5: Given an initial integer n0 > 1, two players, A and B, choose integers n1,

n2, n3, . . . alternately according to the following rules:

Knowing n2k, A chooses any integer n2k+1 such that n2k ≤ n2k+1 ≤ n2
2k .

Knowing n2k+1, B chooses any integer n2k+2 such that n2k+1/n2k+2 is a prime

raised to a positive integer power.

Player A wins the game by choosing the number 1990; player B wins by choosing

the number 1. For which n0 does:

(a) A have a winning strategy?

(b) B have a winning strategy?

(c) Neither player have a winning strategy?

1990/6: Prove that there exists a convex 1990-gon with the following two properties:

(a) All angles are equal.

(b) The lengths of the 1990 sides are the numbers 12, 22, 32, . . . , 19902 in some

order.

1991/1: Given a triangle ABC, let I be the center of its inscribed circle. The

internal bisectors of the angles A,B,C meet the opposite sides in A′, B′, C ′ re-

spectively. Prove that
1

4
<

AI ·BI · CI
AA′ ·BB′ · CC ′ ≤ 8

27
.

1991/2: Let n > 6 be an integer and a1, a2, . . . , ak be all the natural numbers less

than n and relatively prime to n. If a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0 ,

prove that n must be either a prime number or a power of 2.

1991/3: Let S = {1, 2, 3, . . . , 280}. Find the smallest integer n such that each

n-element subset of S contains five numbers which are pairwise relatively prime.

1991/4: Suppose G is a connected graph with k edges. Prove that it is possible to

label the edges 1, 2, . . . , k in such a way that at each vertex which belongs to two

or more edges, the greatest common divisor of the integers labeling those edges is

equal to 1.

[A graph consists of a set of points, called vertices , together with a set of edges

joining certain pairs of distinct vertices. Each pair of vertices u, v belongs to at

most one edge. The graph G is connected if for each pair of distinct vertices x, y

there is some sequence of vertices x = v0, v1, v2, . . . , vm = y such that each pair

vi, vi+1 (0 ≤ i < m) is joined by an edge of G.]

1991/5: Let ABC be a triangle and P an interior point of ABC . Show that at

least one of the angles �PAB, �PBC, �PCA is less than or equal to 30◦.
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1991/6: An infinite sequence x0, x1, x2, . . . of real numbers is said to be bounded if

there is a constant C such that |xi| ≤ C for every i ≥ 0.

Given any real number a > 1, construct a bounded infinite sequence x0, x1, x2, . . .

such that |xi − xj||i− j|a ≥ 1 for every pair of distinct nonnegative integers i, j.

1992/1: Find all integers a, b, c with 1 < a < b < c such that (a− 1)(b− 1)(c− 1)

is a divisor of abc− 1 .

1992/2: Let R denote the set of all real numbers. Find all functions f : R → R

such that f
(
x2 + f(y)

)
= y + (f(x))2 for allx, y ∈ R .

1992/3: Consider nine points in space, no four of which are coplanar. Each pair of

points is joined by an edge (that is, a line segment) and each edge is either colored

blue or red or left uncolored. Find the smallest value of n such that whenever

exactly n edges are colored, the set of colored edges necessarily contains a triangle

all of whose edges have the same color.

1992/4: In the plane let C be a circle, L a line tangent to the circle C, and M

a point on L. Find the locus of all points P with the following property: there

exists two points Q,R on L such that M is the midpoint of QR and C is the

inscribed circle of triangle PQR.

1992/5: Let S be a finite set of points in three-dimensional space. Let Sx, Sy, Sz

be the sets consisting of the orthogonal projections of the points of S onto the

yz-plane, zx-plane, xy-plane, respectively. Prove that |S|2 ≤ |Sx|·|Sy|·|Sz| , where

|A| denotes the number of elements in the finite set |A|. (Note: The orthogonal

projection of a point onto a plane is the foot of the perpendicular from that point

to the plane.)

1992/6: For each positive integer n, S(n) is defined to be the greatest integer such

that, for every positive integer k ≤ S(n), n2 can be written as the sum of k

positive squares.

(a) Prove that S(n) ≤ n2 − 14 for each n ≥ 4.

(b) Find an integer n such that S(n) = n2 − 14.

(c) Prove that there are infintely many integers n such that S(n) = n2 − 14.

1993/1: Let f(x) = xn + 5xn−1 + 3, where n > 1 is an integer. Prove that f(x)

cannot be expressed as the product of two nonconstant polynomials with integer

coefficients.

1993/2: Let D be a point inside acute triangle ABC such that �ADB = �ACB +

π/2 and AC ·BD = AD ·BC.
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(a) Calculate the ratio (AB · CD)/(AC ·BD).

(b) Prove that the tangents at C to the circumcircles of �ACD and �BCD are

perpendicular.

1993/3: On an infinite chessboard, a game is played as follows. At the start, n2

pieces are arranged on the chessboard in an n by n block of adjoining squares, one

piece in each square. A move in the game is a jump in a horizontal or vertical

direction over an adjacent occupied square to an unoccupied square immediately

beyond. The piece which has been jumped over is removed.

Find those values of n for which the game can end with only one piece remaining

on the board.

1993/4: For three points P,Q,R in the plane, we define m(PQR) as the minimum

length of the three altitudes of �PQR.

(If the points are collinear, we set m(PQR) = 0.)

Prove that for points A,B,C,X in the plane, m(ABC) ≤ m(ABX)+m(AXC)+

m(XBC) .

1993/5: Does there exist a function f : N → N such that f(1) = 2, f(f(n)) =

f(n) + n for all n ∈ N, and f(n) < f(n + 1) for all n ∈ N?

1993/6: There are n lamps L0, . . . , Ln−1 in a circle (n > 1), where we denote Ln+k =

Lk. (A lamp at all times is either on or off.) Perform steps s0, s1, . . . as follows: at

step si, if Li−1 is lit, switch Li from on to off or vice versa, otherwise do nothing.

Initially all lamps are on. Show that:

(a) There is a positive integer M(n) such that after M(n) steps all the lamps are

on again;

(b) If n = 2k, we can take M(n) = n2 − 1;

(c) If n = 2k + 1, we can take M(n) = n2 − n + 1.

1994/1: Let m and n be positive integers. Let a1, a2, . . . , am be distinct elements

of {1, 2, . . . , n} such that whenever ai + aj ≤ n for some i, j, 1 ≤ i ≤ j ≤ m, there

exists k, 1 ≤ k ≤ m, with ai + aj = ak. Prove that

a1 + a2 + · · · + am

m
≥ n + 1

2
.

1994/2: ABC is an isosceles triangle with AB = AC. Suppose that

(a) M is the midpoint of BC and O is the point on the line AM such that OB

is perpendicular to AB;

(b) Q is an arbitrary point on the segment BC different from B and C;

(c) E lies on the line AB and F lies on the line AC such that E, Q, F are distinct

and collinear.
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Colecção de Problemas das IMO 1959-presente

Prove that OQ is perpendicular to EF if and only if QE = QF .

1994/3: For any positive integer k, let f(k) be the number of elements in the set

{k + 1, k + 2, . . . , 2k} whose base 2 representation has precisely three 1s.

(a) Prove that, for each positive integer m, there exists at least one positive

integer k such that f(k) = m.

(b) Determine all positive integers m for which there exists exactly one k with

f(k) = m.

1994/4: Determine all ordered pairs (m,n) of positive integers such that
n3 + 1

mn− 1
is an integer.

1994/5: Let S be the set of real numbers strictly greater than −1. Find all functions

f : S → S satisfying the two conditions:

(a) f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x and y in S;

(b)
f(x)

x
is strictly increasing on each of the intervals −1 < x < 0 and 0 < x.

1994/6: Show that there exists a set A of positive integers with the following prop-

erty: For any infinite set S of primes there exist two positive integers m ∈ A and

n /∈ A each of which is a product of k distinct elements of S for some k ≥ 2.

1995/1: Let A,B,C,D be four distinct points on a line, in that order. The circles

with diameters AC and BD intersect at X and Y . The line XY meets BC at

Z. Let P be a point on the line XY other than Z. The line CP intersects the

circle with diameter AC at C and M , and the line BP intersects the circle with

diameter BD at B and N . Prove that the lines AM,DN,XY are concurrent.

1995/2: Let a, b, c be positive real numbers such that abc = 1. Prove that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

1995/3: Determine all integers n > 3 for which there exist n points A1, . . . , An in

the plane, no three collinear, and real numbers r1, . . . , rn such that for 1 ≤ i <

j < k ≤ n, the area of �AiAjAk is ri + rj + rk.

1995/4: Find the maximum value of x0 for which there exists a sequence x0 , x1 , . . . ,

x1995 of positive reals with x0 = x1995, such that for i = 1, . . . , 1995,

xi−1 +
2

xi−1

= 2xi +
1

xi

.

1995/5: Let ABCDEF be a convex hexagon with AB = BC = CD and DE =

EF = FA, such that �BCD = �EFA = π/3. Suppose G and H are points

in the interior of the hexagon such that �AGB = �DHE = 2π/3. Prove that

AG + GB + GH + DH + HE ≥ CF .
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1995/6: Let p be an odd prime number. How many p-element subsets A of {1 , 2 , . . . ,

2p} are there, the sum of whose elements is divisible by p?

1996/1: We are given a positive integer r and a rectangular board ABCD with

dimensions |AB| = 20, |BC| = 12. The rectangle is divided into a grid of 20 × 12

unit squares. The following moves are permitted on the board: one can move from

one square to another only if the distance between the centers of the two squares

is
√
r. The task is to find a sequence of moves leading from the square with A as

a vertex to the square with B as a vertex.

(a) Show that the task cannot be done if r is divisible by 2 or 3.

(b) Prove that the task is possible when r = 73.

(c) Can the task be done when r = 97?

1996/2: Let P be a point inside triangle ABC such that �APB − �ACB =

�APC−�ABC . Let D,E be the incenters of triangles APB,APC, respectively.

Show that AP,BD, CE meet at a point.

1996/3: Let S denote the set of nonnegative integers. Find all functions f from S

to itself such that f(m + f(n)) = f(f(m)) + f(n) ∀m,n ∈ S .

1996/4: The positive integers a and b are such that the numbers 15a + 16b and

16a − 15b are both squares of positive integers. What is the least possible value

that can be taken on by the smaller of these two squares?

1996/5: Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC is

parallel to EF , and CD is parallel to FA. Let RA, RC , RE denote the circumradii

of triangles FAB,BCD,DEF , respectively, and let P denote the perimeter of the

hexagon. Prove that RA + RC + RE ≥ P

2
.

1996/6: Let p, q, n be three positive integers with p+ q < n. Let (x0, x1, . . . , xn) be

an (n + 1)-tuple of integers satisfying the following conditions:

(a) x0 = xn = 0.

(b) For each i with 1 ≤ i ≤ n, either xi − xi−1 = p or xi − xi−1 = −q.
Show that there exist indices i < j with (i, j) �= (0, n), such that xi = xj.

1997/1: In the plane the points with integer coordinates are the vertices of unit

squares. The squares are colored alternately black and white (as on a chessboard).

For any pair of positive integers m and n, consider a right-angled triangle whose

vertices have integer coordinates and whose legs, of lengths m and n, lie along

edges of the squares.
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Let S1 be the total area of the black part of the triangle and S2 be the total area

of the white part. Let f(m,n) = |S1 − S2| .
(a) Calculate f(m,n) for all positive integers m and n which are either both even

or both odd.

(b) Prove that f(m,n) ≤ 1

2
max{m,n} for all m and n.

(c) Show that there is no constant C such that f(m,n) < C for all m and n.

1997/2: The angle at A is the smallest angle of triangle ABC. The points B and C

divide the circumcircle of the triangle into two arcs. Let U be an interior point of

the arc between B and C which does not contain A. The perpendicular bisectors

of AB and AC meet the line AU at V and W , respectively. The lines BV and

CW meet at T . Show that AU = TB + TC .

1997/3: Let x1, x2, . . . , xn be real numbers satisfying the conditions

|x1 + x2 + · · · + xn| = 1

and |xi| ≤ n + 1

2
i = 1, 2, . . . , n .

Show that there exists a permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

|y1 + 2y2 + · · · + nyn| ≤ n + 1

2
.

1997/4: An n× n matrix whose entries come from the set S = {1, 2, . . . , 2n− 1} is

called a silver matrix if, for each i = 1, 2, . . . , n, the ith row and the ith column

together contain all elements of S. Show that

(a) there is no silver matrix for n = 1997;

(b) silver matrices exist for infinitely many values of n.

1997/5: Find all pairs (a, b) of integers a, b ≥ 1 that satisfy the equation ab2 = ba .

1997/6: For each positive integer n , let f(n) denote the number of ways of repre-

senting n as a sum of powers of 2 with nonnegative integer exponents. Represen-

tations which differ only in the ordering of their summands are considered to be

the same. For instance, f(4) = 4, because the number 4 can be represented in the

following four ways 4 ; 2 + 2 ; 2 + 1 + 1 ; 1 + 1 + 1 + 1 .

Prove that, for any integer n ≥ 3, 2n2/4 < f(2n) < 2n2/2 .

1998/1: In the convex quadrilateral ABCD, the diagonals AC and BD are per-

pendicular and the opposite sides AB and DC are not parallel. Suppose that the

point P , where the perpendicular bisectors of AB and DC meet, is inside ABCD.

Prove that ABCD is a cyclic quadrilateral if and only if the triangles ABP and

CDP have equal areas.

1998/2: In a competition, there are a contestants and b judges, where b ≥ 3 is an

odd integer. Each judge rates each contestant as either “pass” or “fail”. Suppose
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k is a number such that, for any two judges, their ratings coincide for at most k

contestants. Prove that k/a ≥ (b− 1)/(2b).

1998/3: For any positive integer n, let d(n) denote the number of positive divi-

sors of n (including 1 and n itself). Determine all positive integers k such that

d(n2)/d(n) = k for some n.

1998/4: Determine all pairs (a, b) of positive integers such that ab2 + b + 7 divides

a2b + a + b.

1998/5: Let I be the incenter of triangle ABC. Let the incircle of ABC touch the

sides BC, CA, and AB at K, L, and M , respectively. The line through B parallel

to MK meets the lines LM and LK at R and S, respectively. Prove that angle

RIS is acute.

1998/6: Consider all functions f from the set N of all positive integers into itself

satisfying f(t2f(s)) = s(f(t))2 for all s and t in N . Determine the least possible

value of f(1998).

1999/1: Determine all finite sets S of at least three points in the plane which satisfy

the following condition:

• For any two distinct points A and B in S, the perpendicular bisector of the

line segment AB is an axis of symmetry for S.

1999/2: Let n be a fixed integer, with n ≥ 2.

(a) Determine the least constant C such that the inequality

∑
1≤i<j≤n

xixj(x
2
i + x2

j) ≤ C

( ∑
1≤i≤n

xi

)4

holds for all real numbers x1, . . . , xn ≥ 0.

(b) For this constant C, determine when equality holds.

1999/3: Consider an n × n square board, where n is a fixed even positive integer.

The board is divided into n2 unit squares. We say that two different squares on

the board are adjacent if they have a common side.

N unit squares on the board are marked in such a way that every square (marked

or unmarked) on the board is adjacent to at least one marked square.

Determine the smallest possible value of N .

1999/4: Determine all pairs (n, p) of positive integers such that

• p is a prime,

• n not exceeded 2p, and

• (p− 1)n + 1 is divisible by np−1.

1999/5: Two circles G1 and G2 are contained inside the circle G, and are tangent

to G at the distinct points M and N , respectively. G1 passes through the center
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of G2. The line passing through the two points of intersection of G1 and G2 meets

G at A and B. The lines MA and MB meet G1 at C and D, respectively.

Prove that CD is tangent to G2.

1999/6: Determine all functions f : R −→ R such that f(x − f(y)) = f(f(y)) +

xf(y) + f(x) − 1 , for all real numbers x, y.

2000/1: AB is tangent to the circles CAMN and NMBD. M lies between C and

D on the line CD, and CD is parallel to AB. The chords NA and CM meet at

P ; the chords NB and MD meet at Q. The rays CA and DB meet at E. Prove

that PE = QE.

2000/2: A , B , C are positive reals with product 1. Prove that

(A− 1 + 1/B)(B − 1 + 1/C)(C − 1 + 1/A) ≤ 1 .

2000/3: k is a positive real. N is an integer greater than 1. N points are placed on

a line, not all coincident. A move is carried out as follows. Pick any two points A

and B which are not coincident. Suppose that A lies to the right of B. Replace

B by another point B′ to the right of A such that AB′ = k BA. For what values

of k can we move the points arbitarily far to the right by repeated moves?

2000/4: 100 cards are numbered 1 to 100 (each card different) and placed in 3 boxes

(at least one card in each box). How many ways can this be done so that if two

boxes are selected and a card is taken from each, then the knowledge of their sum

alone is always sufficient to identify the third box?

2000/5: Can we find N divisible by just 2000 different primes, so that N divides

2N + 1?

[N may be divisible by a prime power.]

2000/6: A1A2A3 is an acute-angled triangle. The foot of the altitude from Ai is Ki

and the incircle touches the side opposite Ai at Li. The line K1K2 is reflected in

the line L1L2. Similarly, the line K2K3 is reflected in L2L3 and K3K1 is reflected in

L3L1. Show that the three new lines form a triangle with vertices on the incircle.

2001/1: ABC is acute-angled. O is its circumcenter. X is the foot of the perpen-

dicular from A to BC. �C ≥ �B + 30◦. Prove that �A + �COX < 90◦.
2001/2: a, b, c are positive reals. Let a′ =

√
a2 + 8bc, b′ =

√
b2 + 8ca, c′ =

√
c2 + 8ab.

Prove that a/a′ + b/b′ + c/c′ ≥ 1 .

2001/3: Integers are placed in each of the 441 cells of a 21 × 21 array. Each row

and each column has at most 6 different integers in it. Prove that some integer is

in at least 3 rows and at least 3 columns.
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2001/4: Let n1, n2, . . . , nm be integers where m is odd. Let x = (x1, . . . , xm) denote

a permutation of the integers 1, 2, . . . ,m. Let f(x) = x1n1 + x2n2 + · · · + xmnm.

Show that for some distinct permutations a, b the difference f(a)−f(b) is a multiple

of m!.

2001/5: ABC is a triangle. X lies on BC and AX bisects angle A. Y lies on CA

and BY bisects angle B. Angle A is 60◦. AB+BX = AY +Y B. Find all possible

values for angle B.

2001/6: K > L > M > N are positive integers such that KM + LN = (K + L −
M + N)(−K + L + M + N). Prove that KL + MN is composite.

2002/1: S is the set of all (h, k) with h, k non-negative integers such that h+k < n.

Each element of S is colored red or blue, so that if (h, k) is red and h′ ≤ h, k′ ≤ k,

then (h′, k′) is also red. A type 1 subset of S has n blue elements with different

first member and a type 2 subset of S has n blue elements with different second

member. Show that there are the same number of type 1 and type 2 subsets.

2002/2: BC is a diameter of a circle center O. A is any point on the circle with

angle AOC > 60◦. EF is the chord which is the perpendicular bisector of AO. D

is the midpoint of the minor arc AB. The line through O parallel to AD meets

AC at J . Show that J is the incenter of ∆ CEF .

2002/3: Find all pairs of integers m > 2, n > 2 such that there are infinitely many

positive integers k for which (kn + k2 − 1) divides (km + k − 1).

2002/4: The positive divisors of the integer n > 1 are d1 < d2 < · · · < dk, so that

d1 = 1, dk = n. Let d = d1d2 + d2d3 + · · · + dk−1dk. Show that d < n2 and find all

n for which d divides n2.

2002/5: Find all real-valued functions f on the reals such that, for all x, y, u, v

(f(x) + f(y))(f(u) + f(v)) = f(xu− yv) + f(xv + yu) .

2002/6: n > 2 circles of radius 1 are drawn in the plane so that no line meets more

than two of the circles. Their centers are O1, O2, . . . , On then∑
i<j

1

OiOj

≤ (n− 1)π

4
.

2003/1: S is the set {1, 2, 3, . . . , 1000000}. Show that for any subset A of S with 101

elements we can find 100 distinct elements xi of S, such that the sets {a+xi|a ∈ A}
are all pairwise disjoint.

2003/2: Find all pairs (m,n) of positive integers such that m2/(2mn2 − n3 + 1) is

a positive integer.
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2003/3: A convex hexagon has the property that for any pair of opposite sides the

distance between their midpoints is
√

3/2 times the sum of their lengths Show

that all the hexagon’s angles are equal.

2003/4: ABCD is cyclic. The feet of the perpendicular from D to the lines AB,BC ,

and CA are P,Q,R , respectively. Show that the angle bisectors of ABC and

CDA meet on the line AC iff RP = RQ.

2003/5: Given n > 2 and reals x1 ≤ x2 ≤ · · · ≤ xn, show that

(
∑
i,j

|xi − xj|)2 ≤ 2

3
(n2 − 1)

∑
i,j

(xi − xj)
2 .

Show that we have equality if and only if the sequence is an arithmetic progression.

2003/6: Show that for each prime p, there exists a prime q such that np − p is not

divisible by q for any positive integer n.

2004/1: Seja ABC um triângulo acutângulo com AB �= AC . A circunferência de

diâmetro BC intersecta os lados AB e AC nos pontos M e N , respectivamente.

Seja O o ponto médio do lado BC . As bissectrizes dos ângulos BAC e MON

intersectam-se em R . Prove que as circunferências circunscritas aos triângulos

BMR e CNR têm um ponto em comum que pertence ao lado BC .

2004/2: Determine todos os polinómios P de coeficientes reais que satisfazem a

igualdade

P (a− b) + P (b− c) + P (c− a) = 2P (a + b + c)

para quaisquer números reais a, b, c tais que ab + bc + ca = 0 .

2004/3: Um gancho é uma figura formada por seis quadrados unitários como no

seguinte diagrama

ou qualquer uma das figuras obtidas desta aplicando rotações ou reflexões. Deter-

mine todos os rectângulos m × n que podem ser cobertos com ganchos de modo

que:

• o rectângulo é coberto sem buracos e sem sobreposições;

• nenhuma parte de nenhum gancho pode cobrir regiões fora do rectângulo.

2004/4: Seja n ≥ 3 um inteiro. Sejam t1, t2, . . . , tn números reais positivos tais que

n2 + 1 > (t1 + t2 + · · · + tn)(1/t1 + 1/t2 + ··· + 1/tn) .

Mostre que ti, tj e tk são as medidas dos lados de um triângulo para quaisquer

i, j, k com 1 ≤ i < j < k ≤ n .
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2004/5: Num quadrilátero convexo ABCD a diagonal BD não é bissectriz do

Ângulo ABC nem do ângulo CDA . Um ponto P no interior de ABCD sat-

isfaz

∠PBC = ∠DBA e ∠PDC = ∠BDA .

Prove que os vértices do quadrilátero ABCD pertencem a uma mesma circun-

ferência se e só se AP = CP .

2004/6: Um inteiro positivo é dito alternante se, na sua representação decimal,

quaisquer dois d́ıgitos consecutivos têm paridade diferente.

Determine todos os inteiros positivos n tais que n tem um múltiplo que é alter-

nante.
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