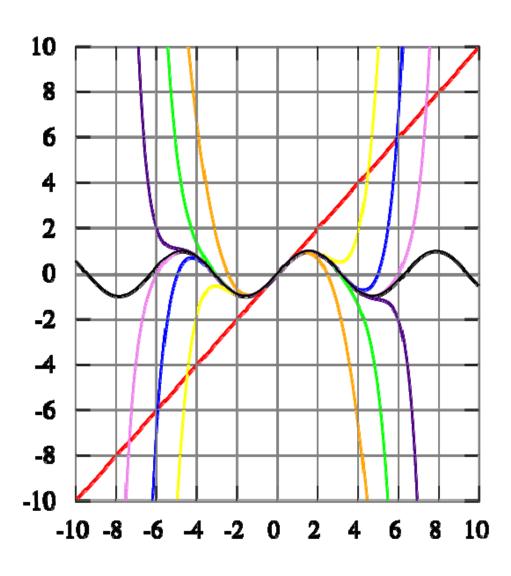
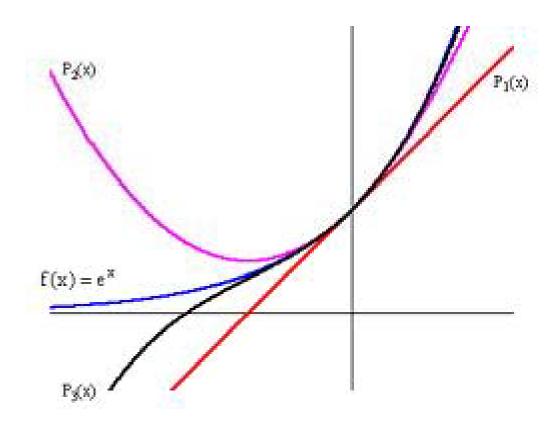
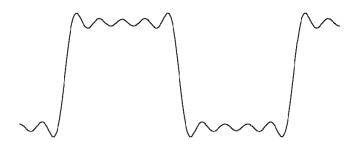
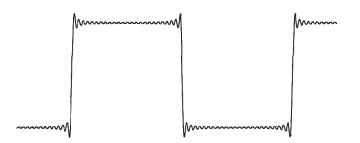

Introdução aos Polinómios Ortogonais

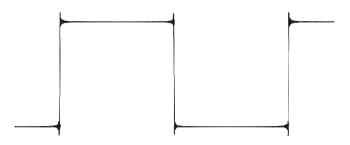



Índice de Conteúdos

- I. Aproximação com polinómios
- II. Compressão de Informação
- III. Regras de quadratura gaussiana
- IV. Interpretação eletrostática dos zeros
- V. Ótica (Polinomios de Zernike)
- VI. Átomo de hidrogénio (WWW)
- VII. Oscilador harmônico quântico (WWW)


Aproximação com polinómios: Serie de Taylor




Aproximação com polinómios: Serie de Taylor

Aproximação com polinómios: Problema: fenômeno de Gibbs

II. Compressão de InformaçãoImagens

K.W. See et al. | Applied Mathematics and Computation 193 (2007) 346-359

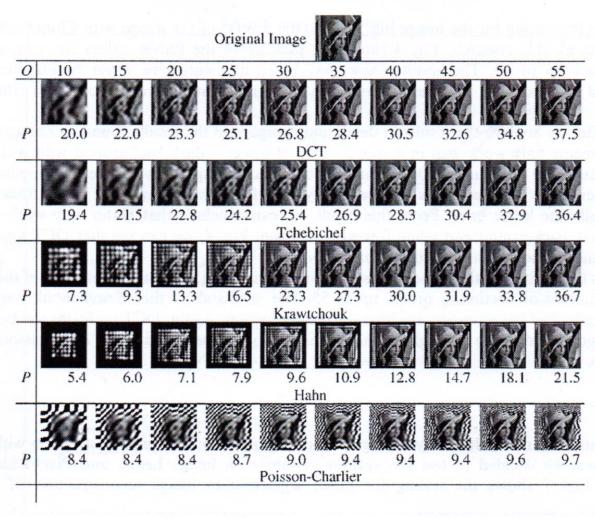
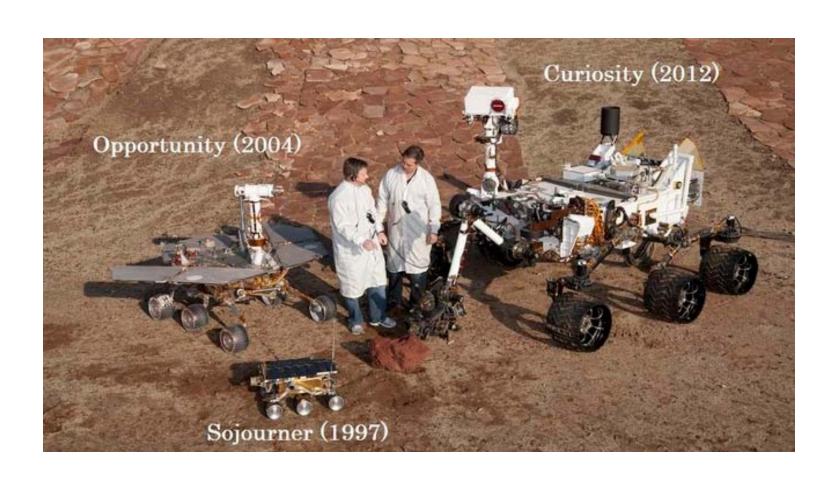
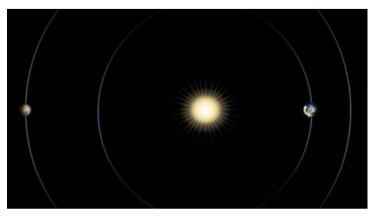

0	2	4	6	8	10	12	14	16	18	20	22	24	26	28
	(0)	K	E	E	E	E	E	E	E	E	E	E	E	E
P	8.3	9.4	10.7	13.6	14.5	14.6	15.5	17.1	18.8	20.7	23.8	27.2	29.4	00
							D	CT_						
	(0)	(1		E	E	E	E	E	E	E	E	E	E
P	8.7	8.9	9.6	10.9	13.6	14.6	14.8	15.0	16.1	19.9	21.8	24.2	34.7	38.7
							Tchel	bichef						3
	22	111	E	E	E	E	E	E	E	E	E	E	E	E
P	1.8	2.7	4.8	7.2	11.4	12.6	14.9	17.0	18.4	19.9	22.1	26.8	28.2	38.7
		- will supply		542000000000000000000000000000000000000			Krawt	chouk				arana ma	//www	
all the second	-	=	1=	E		E	E	E	E	E	E	E	E	E
P	1.8	2.1	2.2	2.7	3.6	4.9	5.6	7.4	8.2	11.8	13.2	17.6	21.7	00
								hn						
180	1		E	E	E	E	E	E	E	E	E	E	E	E
P	5.0	4.4	6.8	8.6	9.1	8.6	9.7	9.6	9.6	10.1	8.8	10.2	9.9	12.7
	0.0		0.0	0.0	,,,		oisson-				0.0		,,,	

Fig. 1. Image reconstruction of the letter "E" (grayscale 30 × 30) from orders 2 to 28, with the PSNR val


216

II. Compressão de InformaçãoImagens

K.W. See et al. | Applied Mathematics and Computation 193 (2007) 346-359


^{5.} Image reconstruction of the image Lenna (grayscale 64 × 64) from orders 10 to 55, with the PSNR val

Pôr do sol em Marte (Spirit) Credits: NASA/JPL

NASA Deep Space Network
(http://deepspace.jpl.nasa.gov/dsn/)

- 1. Goldstone, Estados Unidos (desierto de Mojave)
- 2. Canberra, Australia
- 3. Robledo de Chavela, Madrid (Espanha)

(12)	Unite	ed St	tates	Patent
	Cheng o	et al.		

(10) Patent No.:

York.

US 7,249,153 B2

(45) Date of Patent:

Jul. 24, 2007

(54) DATA COMPRESSION USING CHEBYSHEV TRANSFORM

6,051,027 A * 4/2000 Kapur et al. 703/5

(75)	Inventors:	Andrew F. Cheng, Potomac, MD (US);
		S. Edward Hawkins, III, Ellicott City,
		MD (US); Lillian Nguyen, Ellicott
		City, MD (US); Christopher A.
		Monaco, Silver Spring, MD (US);
		Gordon G. Seagrave, Washington, DC
		(US)

OTHER PUBLICATIONS

Corr et al., "Discrete Chebyshev Transform A Matural Modification

of the DCT", 2000 IEEE, pp. 1142-1145.*

Anand R. Prasad; Audio Coding using Parametric Piecewise Modeling; IEEE ICPWC '99; 1999; pp. 414-418; IEEE, New York, New

(73) Assignee: **The Johns Hopkins University**, Baltimore, MD (US)

Y. S. Zhu, S. W. Leung, Systolic Array Implementations for Chebyshev Nonuniform Sampling; IEEE; 1992; pp. IV-177 to IV-180; IEEE, New York, New York.

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

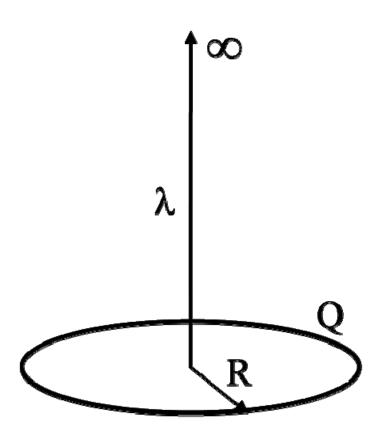
Gerard Leng; Compression of aircraft aerodynamic database using multivariable Chebyshev polynomials; Advances in Engineering Software 28 (1997); pp. 133-141; Elsevier Science Ltd.. Great Britain.

U.S.C. 154(b) by 591 days.

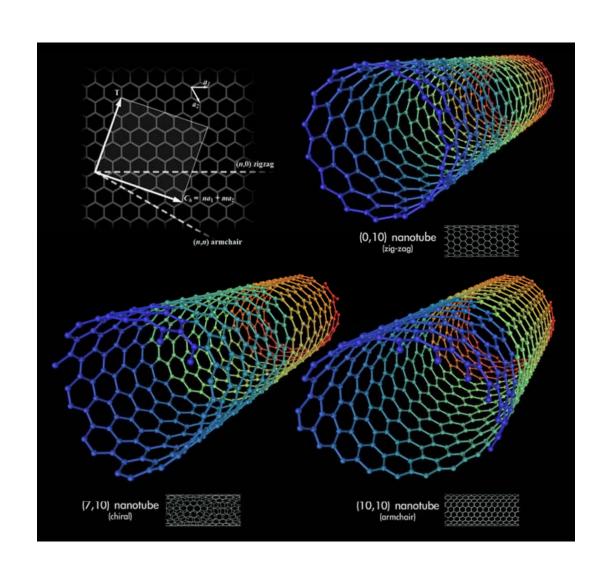
(22)	Filed: Aug. 1, 2003
(65)	Prior Publication Data
	US 2004/0093364 A1 May 13, 2004
	Related U.S. Application Data
(60)	Provisional application No. 60/400,326, filed on Aug. 1, 2002.
(51)	Int. Cl. G06F 15/00 (2006.01) G06F 17/14 (2006.01)
(52)	U.S. Cl
(58)	Field of Classification Search
	See application file for complete search history.
(56)	References Cited
	U.S. PATENT DOCUMENTS
	4,658,367 A * 4/1987 Potter 702/111

Primary Examiner—Chuong D. Ngo (74) Attorney, Agent, or Firm—Francis A. Cooch

(57) ABSTRACT

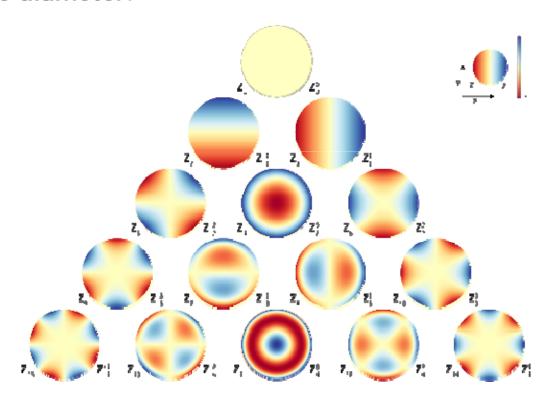

The present invention is a method, system, and computer program product for implementation of a capable, general purpose compression algorithm that can be engaged "on the fly". This invention has particular practical application with time-series data, and more particularly, time-series data obtained form a spacecraft, or similar situations where cost, size and/or power limitations are prevalent, although it is not limited to such applications. It is also particularly applicable to the compression of serial data streams and works in one, two, or three dimensions. The original input data is approximated by Chebyshev polynomials, achieving very high compression ratios on serial data streams with minimal loss of scientific information.

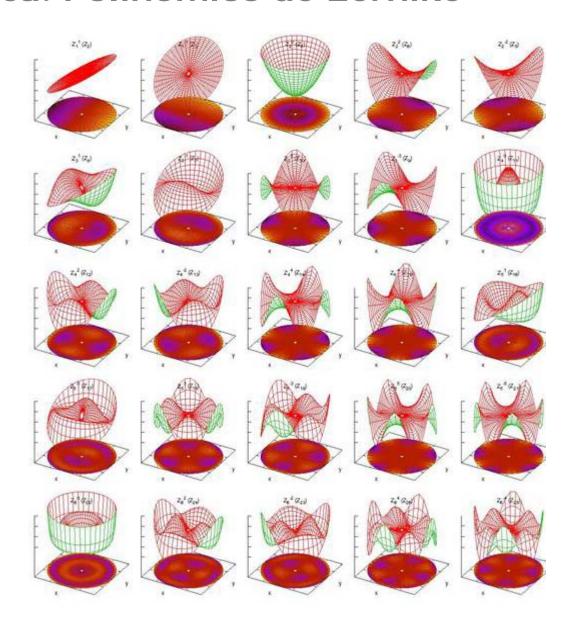
27 Claims, 3 Drawing Sheets


III. Regras de quadratura gaussiana

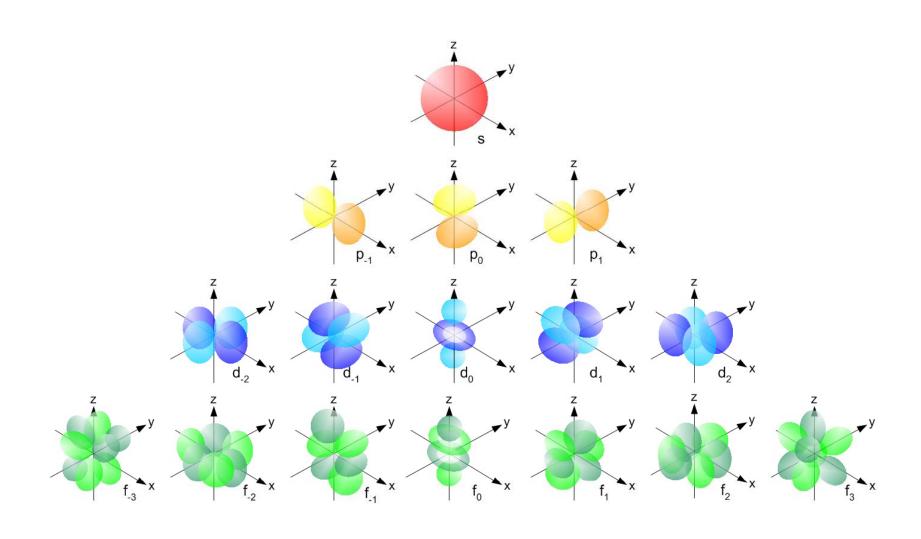
$$\int f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

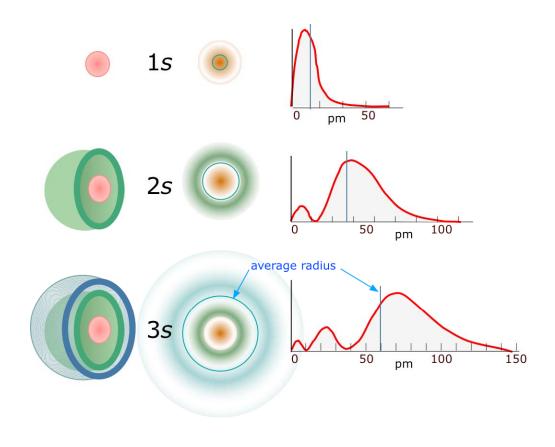
IV.Interpretação eletrostática dos zeros dos polinómios ortogonais

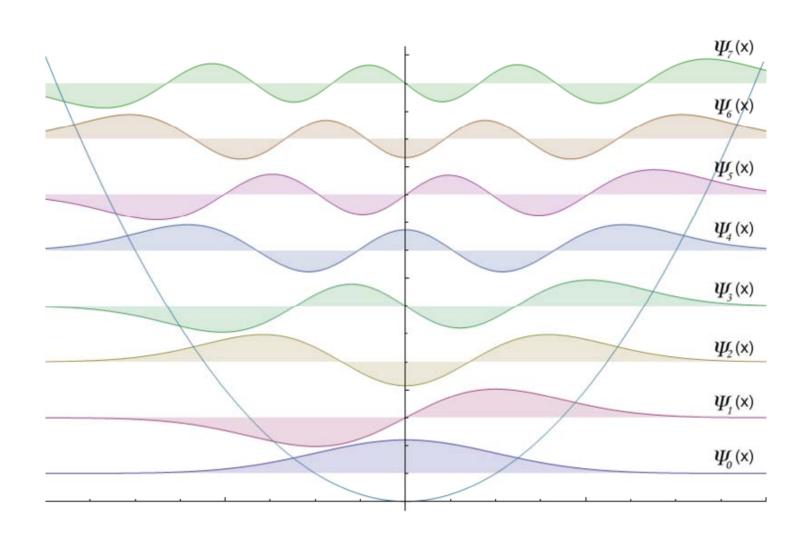

IV.Interpretação eletrostática dos zeros dos polinómios ortogonais -Carbon nanotubes


V. Ótica. Polinómios de Zernike

Applications of Zernike polynomials


The Zernike polynomials are a basis defined over the circular support area, typically the pupil planes in classical optical imaging at visible and infrared wavelengths through systems of lenses and mirrors of finite diameter.


V. Ótica. Polinómios de Zernike


VI. Átomo de hidrogénio Mecânica quântica - Orbitais atómicos

VI. Átomo de hidrogénio Mecânica quântica - Orbitais atómicos

VII. Oscilador harmônico quântico Orbitáis quânticos

